Implementación de un sistema productivo de banano (Musa acuminata AAA) como alternativa sustentable y competitiva para pequeños productores del municipio de Andes - Antioquia

Patricia Velásquez Rodríguez

Follow this and additional works at: https://ciencia.lasalle.edu.co/ingenieria_agronomica

Citación recomendada
Velásquez Rodríguez, P. (2016). Implementación de un sistema productivo de banano (Musa acuminata AAA) como alternativa sustentable y competitiva para pequeños productores del municipio de Andes - Antioquia. Retrieved from https://ciencia.lasalle.edu.co/ingenieria_agronomica/43
IMPLEMENTACIÓN DE UN SISTEMA PRODUCTIVO DE BANANO (Musa acuminata AAA) COMO ALTERNATIVA SUSTENTABLE Y COMPETITIVA PARA PEQUEÑOS PRODUCTORES DEL MUNICIPIO DE ANDES - ANTIOQUIA

INFORME FINAL DE GRADO

GUSTAVO CASTRO GARCÍA
Director trabajo de grado

PATRICIA VELÁSQUEZ RODRÍGUEZ

UNIVERSIDAD DE LA SALLE
FACULTAD DE CIENCIAS AGROPECUARIAS
INGENIERÍA AGRONÓMICA

El Yopal, agosto de 2016
Agradecimientos

A Dios porque estoy segura que sin él nada de esto sería posible.

A mi familia, en especial a mi madre Olga Patricia Velásquez Rodríguez, a mi hermana Yennifer Tatiana Gómez Velásquez y mi hermano Wilson Andrés Henao Velásquez por su apoyo incondicional en todo mi proceso de formación.

A la universidad de La Salle, encabezada por su rector Carlos Gabriel Gómez Restrepo, a la doctora Camila Herrera por su apoyo; a los docentes y hermanos de la institución en especial a mi tutor de grado Gustavo Castro García, por el tiempo dedicado y su apoyo incondicional.

A los compañeros de estudio con cuales emprendí este gran sueño, en especial a Lina Palomino Gutiérrez y Pompilio Acevedo Sánchez.

A todas las personas e instituciones que financiaron mis estudios, en especial a la universidad de La Salle y a la fundación Aurelio Llano Posada, gracias por apoyarnos y estar pendiente de todo lo que acontecía.

Que Dios los bendiga a todos.
TABLA DE CONTENIDO

1. INTRODUCCIÓN .. 5
2. OBJETIVOS .. 6
 2.1 Objetivo general .. 6
 2.2 Objetivos específicos ... 6
3. JUSTIFICACIÓN .. 7
4. LOCALIZACIÓN Y CARACTERIZACIÓN DEL PROYECTO .. 8
 5.1 Vías de acceso ... 9
 5.1.1 Condiciones edafoclimáticas de andes y la vereda palestina 9
6 CARACTERIZACIÓN SOCIOECONÓMICA ... 10
 6.1 Actividades económicas de Andes - Antioquia .. 10
 6.1.1 Sociología del municipio .. 11
 6.1.2 Características de la población de Andes ... 12
7. COMPONENTE DE INGENIERÍA AGRONÓMICA ... 12
 7.1. Condiciones edafoclimáticas del cultivo de banano .. 12
 7.2 Descripción taxonómica .. 12
 7.2.1 Preparación del terreno ... 14
 7.2.2 Siembra ... 15
 7.2.3 Siembra del material vegetal ... 17
 7.2.4 Resiembra .. 17
 7.3 Manejo de recursos hídricos ... 18
 7.4 Plan de fertilización .. 20
 7.4.1 Aporque .. 21
 7.5.2 Control de plagas ... 22
 7.5.3 Enfermedades ... 22
 7.6 Actividades culturales ... 24
 7.6.1 Deshoje .. 24
1. INTRODUCCIÓN

El presente proyecto se desarrolló en el municipio de Andes, Suroeste antioqueño, a una altura de 1.300 m.s.n.m, en la vereda Palestina, finca La Sará. El municipio de Andes tiene una extensión de área urbana de 2.5 km² y área rural de 441.5 km² existiendo en total 444 km² con una población de 45.814 habitantes (Admón. Municipal de Andes, 2015).

En el municipio de Andes tradicionalmente se cultiva café (Cofee arábica) siendo una fuente de empleo para pequeños y grandes productores. Sin embargo, los altos costos de los insumos y la falta de conocimiento están forzando a los jóvenes a abandonar sus familias desplazándose a la ciudad en búsqueda de oportunidades.

Se ha evidenciado que los agricultores por falta de acompañamiento cultivan con conocimientos empíricos generando un manejo inapropiado en las diferentes plagas y enfermedades. Todo esto conlleva a obtener productos de mala calidad y no ser competitivos en el mercado.

El proyecto desarrollado se ejecutó con el objetivo de ser una alternativa para la producción en la zona, buscando la diversificación de la economía. Evaluando la rentabilidad, realizando un análisis del impacto social y ambiental que esté tiene sobre la comunidad. Finalmente se concluye que el evaluar un modelo productivo para la región, no solamente contribuyó a generar efectos técnicos, sino que además impulsa a un cambio socioeconómico en el que la población invierte en el agro cambiando la visión de empleado a empresario.
2. OBJETIVOS

2.1 Objetivo general

Implementar un modelo productivo de banano (*Musa acuminata* AAA) como alternativa sustentable y competitiva para pequeños productores de la vereda Palestina en Andes - Antioquia.

2.2 Objetivos específicos

- Establecer un cultivo de banano (*Musa acuminata*) en el municipio de Andes ejecutando el plan de manejo técnico acorde a la zona.
- Realizar actividades de extensión rural sobre las prácticas agrícolas y el manejo correspondiente de las fases del cultivo.
- Realizar una investigación social que permita evaluar la influencia de la producción de banano en la vereda Palestina.
- Realizar actividades de BPA (Buenas Prácticas Agrícolas) estableciendo mitigar el impacto ambiental de las actividades agrícolas.
3. PLANTEAMIENTO DEL PROBLEMA

Se ha evidenciado que en la zona aproximadamente el 100% de los productores siembran café y la diversificación de cultivos es muy baja, por ende, no hay estabilidad económica y durante los últimos años la crisis cafetera se ha vuelto notable y hace que los campesinos sufran apuros económicos (Anexo # 1). Una de las causas de esta situación es la falta de conocimiento en otros cultivos y el bajo acompañamiento de asesores técnicos, los campesinos cultivan con los conocimientos empíricos y debido a esto en ocasiones cometen errores que los llevan a no ser competitivos. A pesar de la crisis la gente sigue sembrando café, pensando que es de fácil comercialización y no intentan diversificar la producción, lo cual los obliga a depender únicamente del café.

El café como tal no es el problema, el problema es no tener cultivos sustitutos que suplan las necesidades económicas durante los 9 meses del año que no hay cosecha cafetera, y como no hay ese sostén se ven obligados a realizar préstamos para comprar los productos de la canasta familiar y algunos agroinsumos. Año tras año ocurre lo mismo, lo que ha conllevado a convertir esta situación repetitiva donde a los productores sólo les queda el cansancio y las ganancias se las llevan las empresas que exportan, procesan, comercializan el café y las entidades que realizan los préstamos, en su mayoría de carácter bancario. Desde este punto vista el proyecto de banano se presenta como una alternativa de producción agrícola de la zona.
4. JUSTIFICACIÓN

La comunidad de la vereda Palestina, del municipio de Andes, se ha enfocado a producir café por décadas, implementando pequeños sistemas de agricultura de pancoger, realizándolos de manera tradicional y con el miedo de establecer otros cultivos, motivados por la falta de recursos o la falta de acompañamiento. Por lo tanto, una alternativa de variar el monocultivo es la implementación de cultivos de banano; puesto que las áreas sembradas de musáceas son pocas, ya que establecen las plantas entre los surcos de café, el banano es un cultivo potencialmente adecuado en la zona para alternar la producción agrícola y no depender solamente de los ciclos del café.

El municipio de Andes posee las características edafoclimáticas convenientes (Anexo# 2) para la siembra de esta planta. La implementación de un cultivo diferente en la zona le permitirá a la población considerar la posibilidad de evaluar y aprovechar los recursos, diversificando la vocación de los suelos. Posteriormente les permitirá a los agricultores interesados implementar este modelo en sus terrenos y buscar otras oportunidades de vida, ya que muchas personas a veces no logran ni conseguir sustento para su familia y se ligan a trabajar en las fincas de gran extensión, dependiendo de jornales que no son suficiente para mantener el hogar.

5. LOCALIZACIÓN Y CARACTERIZACIÓN DEL PROYECTO

El proyecto se llevó a cabo en (Anexo# 3) el departamento de Antioquia municipio de Andes, corregimiento de San Bartolo, vereda Palestina, en la finca La Sara, ubicada en las coordenadas: latitud 5° 40' 24.40" N, longitud 75° 51' 53.96" O y a una altitud de 1.328 m.s.n.m, con un área de 2.500 m² de tierra. Se tiene
establecido un cultivo con 340 plantas de banano. El predio se encuentra a 5 km del casco urbano.

Andes se encuentra ubicado en la subregión del Suroeste de Antioquia, a 126 km de su capital Medellín, con vía pavimentada en su totalidad y esto facilita obtener insumos, herramientas y accesorios, el sistema de transporte es cada hora con un costo que oscila entre $17.000 a $19.000 hasta la capital.

5.1 Vías de acceso

La ruta de acceso desde el municipio a la finca es por vía sin pavimentar, recorriendo 5 km en un tiempo aproximado de 30 minutos, se cuenta con transporte solo el día domingo a las 7:00 a.m., 12:00 m. y 5:00 p.m., con un costo de $4.500 pesos o en taxi a cualquier hora con un costo de $20.000. El lote se encuentra a 50 m de la casa de la finca y a 100 m de la carretera, lo que es de gran ventaja para actividades propias del proyecto (comercialización, facilidad de acceder a insumos y costos de transporte del producto).

5.1.1 Condiciones edafoclimáticas de andes y la vereda palestina

Andes y sus montañas pertenecen a la Cordillera Occidental, cuenta con unas condiciones propicias para establecer diversos cultivos (Anexo # 2), por sus zonas montañosas se encuentran diferentes pisos térmicos y una gran diversidad (Anexo # 4) de fauna y flora. La fauna silvestre se está viendo afectada ante la gran deforestación producida por la ampliación de la frontera agrícola. En Andes aún existen bosques naturales asociados con la fauna silvestre (Anexo # 5) en los corregimientos (DPN, 2015).
El ecosistema del lote (Anexo # 7) está conformado por una reserva de bosque aproximadamente de 0,68 ha en la finca La Crispiniana y en él un afluente hídrico del cual se abastecen los habitantes de la vereda, por lo que es la utilizada para el consumo de la finca La Sara. La zona presenta diversidad de fauna y flora; dentro de la fauna se encuentran aves y en la flora se destaca la presencia de plantas de las familias: rutácea, malvácea, poáceas, fabáceas.

6 CARACTERIZACIÓN SOCIOECONÓMICA

Andes se caracteriza por ser un pueblo de gran potencial por tener un excelente comercio (centros comerciales, tiendas, cafeterías, almacenes), turismo (ecoparque, trucheras, estadio, ciudadela, coliseo y sendero ecológico), cooperativas (Cooperandes, COMSAB y San Juan, trilladora de café) se cuenta con un beneficiadero de carnes, varios colegios de primaria y secundaria y una sede de la universidad de Antioquia. Pero sin embargo los campesinos no tienen acceso a la mayoría de estos.

6.1 Actividades económicas de Andes - Antioquia

Es una zona de fácil acceso a herramientas y agroinsumos. En el municipio se encuentran 6 locales que se dedican a la venta de productos relacionados con las actividades de campo para la producción agrícola y pecuaria. El café es el producto insignia de la zona, lo que ha evitado que la producción de banano no sea mayor y por ende la oferta no sea muy alta. Las actividades de mayor relevancia son (Anexo # 6) la ganadería, la minería y el comercio; se destaca la ganadería vacuna, se
explotan minas de oro y hay reservas carboníferas, pero la actividad agrícola es la más representativa. (Admón. municipal, 2014)

6.1.1 Sociología del municipio

La vereda Palestina cuenta con un área de 8,5 km2, el 60% de la tierra pertenece a 6 personas y el resto del área en pequeñas parcelas de 2,5 hectáreas; la vereda en la actualidad cuenta con aproximadamente 240 habitantes. De acuerdo con la distribución (Anexo # 8) predial, en la tenencia de la tierra del municipio de Andes predominan los propietarios con un área no mayor a 2 ha (Admón., 2014).

6.1.2 Sociograma del municipio de Andes

Los actores y grupos sociales en el municipio de Andes (Anexo # 9) están vinculados por las conexiones entre ellos para mejorar las relaciones existentes (Anexo # 10) en el municipio y de estos predominando la Alcaldía Municipal, que es la entidad encargada de gestionar y ejecutar los proyectos para el desarrollo del municipio y sus veredas.
6.1.2 Características de la población de Andes

El municipio está conformado por 45.814 habitantes (Anexo # 8), de ellos se identifican muchos terratenientes de fincas cafeteras y esto hace que la mayoría de la población dependa del cultivo de café, las comunidades no ejecutan actividades para mejorar los cultivos existentes, por motivos en la falta de iniciativa o del capital necesario. A diario ejecutan sus actividades con los conocimientos empíricos y año tras año han estado sembrando y sobreviviendo del mismo cultivo. A pesar del precio del café sigue siendo el cultivo élite tanto de la vereda Palestina como del municipio. Entre la población predominan los mestizos, sin embargo, un 1,64% de la población es afro y un 0,18 % es indígena.

7. COMPONENTE DE INGENIERÍA AGRONÓMICA

A continuación se presenta el desarrollo del componente de ingeniería agronómica.

7.1. Condiciones edafoclimáticas del cultivo de banano

Las condiciones recomendadas para el cultivo de banano según UCO, (2012) varían respecto a las condiciones que se presentan en el lote (Anexo # 2). No importando esto se ha observado que el desarrollo de la plantación ha sido la adecuada.

7.2 Descripción taxonómica

La planta de banano pertenece a la familia de las musáceas, genero Musa y especie acuminata, la variedad implementada en el cultivo fue Gross Michel, debido a la
adaptabilidad que tiene en la región (UCO, 2012) el material utilizado fue colino con peso entre 500gr y 800gr, adquiridos en la finca La Luz, el material de semilla no es certificado, por lo que en el momento de la selección se visitó el lote donde se extraería el material, revisando la incidencia de plagas y enfermedades.

Descripción de la planta.

Figura: 1. Descripción de la planta.

(Fuente: propia, 2016)

El ciclo vegetativo del banano comprende tres fases fenológicas: vegetativa, reproductiva y productiva (Belalcázar 1991), como se observa en la figura 2.
Fase vegetativa: comprende desde el momento de siembra hasta que inicia el proceso de diferenciación floral; ocurre a los seis meses.

Fase reproductiva: inicia desde la salida del tallo floral hasta que es visible la inflorescencia o bellota.

Fase productiva: En la fase productiva o fructificación se da la organización de la inflorescencia, se diferencian las flores masculinas y femeninas, las brácteas comienzan a abrirse y caerse exponiendo los dedos, e inicia el llenado de fruto que conforma el racimo; esta fase tiene un periodo entre 85 y 90 días. (González 1999, Guerrero 2010).

7.2.1 Preparación del terreno

La preparación del lote inició en el mes de mayo de 2015, procediendo con la respectiva limpieza del lote.
Figura: 3. Eliminación de la plantación antigua.

(Fuente: propia, 2015)

Al tener la preparación del lote se procedió al estaquillado. El lote posee una pendiente de 20º y es montañoso lo que dificultó el trazado, la medición de esta se realizó con cinta métrica y una cabuya, posteriormente se hicieron los hoyos con una dimensión de 40 x 40 x 40 cm. Posteriormente se aplicaron 200 gr de cal agrícola espolvoreada en las paredes y 1.000 gr de gallinaza por sitio de siembra mezclándola con la tierra. Vale resaltar que esta zona por ser de ladera no se realiza mecanización.

7.2.2 Siembra

El sistema de siembra utilizado fue tres bolillos, se sembró a una distancia de 3m x 3m. La densidad de siembra fue de 1.277 plantas/ha.
El material de semilla que se utilizó fue seleccionado de una de las pocas fincas productoras de la zona. Se seleccionó el genotipo presente sembrado, teniendo en cuenta que el material se encuentra adaptado, la variedad fue Gross Michel, se eligieron colinos con un peso entre 500gr y 800gr en la selección de cada colino se le realizó el corte de las raíces posteriormente se ejecutó la desinfección de los colinos con una solución de 50 ml/l de clodos (dosis recomendada), e insecticida 1 ml/l (clorpirifos). Se sumergió la semilla en el recipiente durante 15 minutos para eliminar posibles agentes que pusieran en riesgo la calidad del material vegetal. Estas dosis y tiempos son manejados según el manual de producción de UCO (2012).

Figura: 5. Desinfección del material vegetal.
(Fuente: propia, 2015)
7.2.3 Siembra del material vegetal

Para la siembra se clasificaron los cormos por su peso con el propósito de obtener homogeneidad de producción. Una vez el cormo plantado en el hoyo fue cubierto con suelo y se ejerció presión sobre este, para asegurar el cormo en el terreno y evitar que la zona radicular quede expuesta a la luz o se pueda encharcar (UCO, 2012).

Figura: 6. Siembra de los colinos

(Fuente: propia, 2015)

7.2.4 Resiembra

Se resembro el 5% de colinos, se extrajo el material muerto y enseguida fue dispuesto fuera del lote para evitar la propagación de plagas o enfermedades, seguido se desinfectó el hoyo con insecticida y fungicida y se procedió con la resiembra.

Figura: 7. Resiembra.

(Fuente: propia, 2015)
7.3 Manejo de recursos hídricos.

El agua es esencial para la absorción de nutrientes, transporte y movilidad de los mismos dentro de la planta. La baja absorción afecta el crecimiento y desarrollo de la planta. Los requerimientos hídricos de la planta de banano son altos, debido a su naturaleza herbácea, ya que el 85-88% de su peso es agua (Belalcazar, 1991). Pero esto requerimientos varían según la etapa del cultivo. Vale resaltar que los requerimientos hídricos con los que se trabajaron son los de hartón dominico (Figura 8), puesto que son plantas similares y el estudio fue llevado a cabo en la zona del eje cafetero.

Requerimientos hídricos de la planta en mm semanales

![Diagrama de requerimientos hídricos](image)

Figura 8. Requerimiento hídrico del banano.

(Fuente: Castaño et all, 2011.)

La zona del Suroeste de Antioquia es una subregión con lluvias en promedio de 2.000 – 4.200 mm/año, distribuidas a lo largo del año y no se caracteriza por poseer épocas secas prolongadas durante algunos meses, a pesar que en la formulación del
proyecto no se consideró sistema de riego debido a la precipitación de la zona, se presentó a finales del año anterior 2015 e inicios de este 2016 (noviembre, diciembre, enero y febrero) las lluvias escasas, por lo que fue necesario implementar riego (Figura 9) mediante una manguera para regar de forma localizada por 2 minutos en cada planta, en lo que aproximadamente se aplicaban 15 litros de agua por planta esta actividad se realizó en las horas de la tarde para evitar pérdida por evaporación ejecutándola día por medio.

(Fuente: propia, 2016)

Historial de precipitaciones de Andes

A continuación se (figura, 10) muestra como mediante la aplicación Where Location Intelligence for Global Development de modelacion de lluvia, se puede establecer un aproximado histórico de las lluvias en la zona del proyecto.
7.4 Plan de fertilización

Requerimientos nutricionales

Según Belalcázar (1991), el ciclo del cultivo tiene un requerimiento de: N: 220 kg/ha, P: 105 kg/ha, K: 430 kg/ha, Ca: 220 kg/ha y Mg: 60 kg/ha, para 1100 plantas por hectárea.

La fertilización se realizó de acuerdo con el análisis de suelo (Anexo # 11) donde se obtuvo conocimiento de las condiciones físicas-químicas y la necesidad de nutrientes para el cultivo, se encontró que este suelo contiene 6,3 % de M.O y un 4,3 pH muy fuertemente ácido, al haber identificado estas debilidades se planteó y se ejecutó el plan de fertilización, el cual se realizó utilizando el método de corona y tapándolo (aporque), de acuerdo con el análisis de suelo (Anexo # 12). La mezcla de Urea, DAP, KCl, bórrax, sulfato de amonio, nitrato de potasio, sulfato de magnesio, y elementos menores se aplicó cada dos meses y aumentando el fraccionamiento de acuerdo con las etapas del desarrollo del cultivo. Según el plan de manejo que se siguió, en algunos casos se optó por aplicar el fertilizante disuelto en agua. También, como complemento se aplicó fertilización foliar 200ml/20l y aplicaciones de melaza 500gr/20l.
Se realizó la aplicación de cal agrícola 200 gr/plantas cada 5 meses, 8 días antes de fertilizar, esto con el fin de neutralizar el pH del suelo, ya que se encuentra en 4,3 muy fuertemente ácido y el recomendado para el cultivo es 5,5.

En el lote se realizó un compostaje de material orgánico, se aplicó 1.000 gr por planta, cada 5 meses, esto con el propósito de contribuir a mejorar las propiedades físicas, químicas y biológicas del suelo, con el propósito de favorecer la absorción de nutrientes y el desarrollo de la planta.

7.4.1 Aporque

Esta actividad se realizó con el propósito de fortalecer el desarrollo radicular. Esta actividad se desarrolló con el azadón. El aporque permite acumular suelo alrededor de la planta para evitar el volcamiento, aumentar la eficiencia del fertilizante y contribuir a un mejor desarrollo en el sistema radicular.
7.5.1. PLAN DE MANEJO INTEGRADO DE PLAGAS

7.5.2 Control de plagas

En el lote se observó la presencia de larva (*Megalopyge opercularis*) en una incidencia del 1%, la cual afecta el área foliar. En la zona la presencia de esta larva se presenta en el cultivo de cafeto en época de cosecha de agosto a noviembre, es conocido como gusano de pollo o mota de algodón (*Megalopyge opercularis*), para el control se realizó un control manual.

Nombre común: Gusano de pollo

Nombre científico: (*Megalopyge opercularis*)

Figura: 12. Daños ocasionados por la larva.

(Fuente: propia, 2015)

7.5.3 Enfermedades

Teniendo en cuenta que se han realizado las actividades de prevención desde la selección de la semilla, labores culturales y aplicaciones (polivinil pirrolidona, Dióxido de cloro50ml/l, flutriafol) 1.5cm³/planta, cabe resaltar que se ha evidenciado la
preseencia de sigatoka negra (*Mycosphaerella fijiensis*) con una incidencia del 90% y una severidad del 4%. Este hongo afecta la producción fotosintética y por ende la calidad de la producción. Para el manejo se realizó control cultural, por medio del despunte (eliminacion de la parte apical de la hoja), cirugía (eliminacion de la parte afectada) y deshoje para reducir las fuentes de inóculo del patógeno.

Se evidenciaron 5 plantas infestadas con elefantiasis con 1% de incidencia. Esta enfermedad se caracteriza por un gran aumento del diámetro del pseudotallo cerca al cuello, afectando también los hijuelos, posteriormente arrugamiento y pudrición de la base de las calcetas, que termina por causar el volcamiento de la planta y por consecuencia causa la muerte de esta. El control se realizó disolviendo en un litro de agua en 50ml de dióxido de cloros, se inyectó 50 ml por planta. Para eliminarla. Seguido de esta actividad se aplicó cal viva alrededor de la planta y se colocó una cinta indicando no acercarse. El 1% de las plantas se presentaron posibles síntomas de presencia de nematodos estos agentes generaron retraso en el crecimiento y desarrollo. En las actividades de control cultural se realizó desinfección con dióxido de clodos en la herramienta 50ml/ con el propósito de no infectar las plantas, algunas presentaron síntomas de presencia de nematodos estos agentes generan retraso en el crecimiento y desarrollo.

Figura: 13. Plantas enfermas

(Fuente: propia, 2016)
7.6 Actividades culturales

7.6.1 Deshoje

Esta labor permitió el control de las hojas infestadas con sigatoka (*Mycosphaerella fijiensis*), en donde se utilizó el machete o media luna acompañado de la desinfección con yodo o clodos al 5. El deshoje la libre circulación del viento al igual que la penetración de los rayos solares, beneficiando el crecimiento y desarrollo de los colinos, con esta labor se forma un microclima menos propenso a la aparición de plagas y enfermedades.

(Fuente: propia, 2015)

7.6.2 Deshije

Esta actividad consiste en eliminar los colinos o brotes, utilizando desinfectante (yodo o clodos) al 5% como herramienta un machete a ras del suelo, evitando causar daños al sistema radicular y luego dos cortes verticales en forma de cruz, también se implementó por medio del punzón (figura, 15) insertando en el centro apical de la planta, de esta manera evitar la competencia por luz, agua, nutrientes, espacio que estos le ocasionan a la planta madre y a partir de los 10 meses se inició conservando la generación de madre e hija. Los criterios de clasificación fueron evitando la orientación
a los linderos vecinos de occidente a oriente, que el cormo continúe con la distancia de siembra y un colino de aguja vigoroso.

![Imagen de punzón para eliminar colinos]

Figura: 15. Punzón para eliminar colinos.

Fuente: propia, 2016

7.6.3 Descalcete

Esta actividad, también conocida como desguasque, consistió en quitar las calcetas en estado de senescencia, eliminando posibles focos de inóculos o plagas que se encuentran en las calcetas descompuestas. Esta labor se ejecutó en época seca facilitando retirarla con la mano de abajo hacia arriba dos meses después de la brotación.

7.6.4 Control de arvenses

Se observaron arvenses de la familia de las poáceas, cyperáceas y asteráceas, el control se realizó utilizando la guadaña; se mantuvo el cultivo libre de malezas para evitar un microclima apropiado para la presencia de plagas y enfermedades. Además, para evitar la competencia de agua, luz y nutrientes, se realizó un plateo de 60 cm
alrededor del hoyo en el momento de establecer la planta, esto con el fin de facilitar el control de arvenses, la disponibilidad de fertilizante para la planta, ya que es un terreno con pendiente donde puede ocurrir deslizamiento y lixiviación de los nutrientes.

Figura: 16. Terráceo
(Fuente: propia, 2015)

7.6.5 Embolsado y apuntalado

Se realizó embolsado con el propósito de proteger y estimular el llenado del fruto (fuente). La bolsa empleada tiene una concentración del 1% de insecticida Chlorpyrifos. La actividad se realizó dos semanas después que salió la bellota, consecutivamente se cortó la bellota cerca de la última mano, se retira (manualmente) las partes de flores secas de las manos del racimo y se realizó el tutorado teniendo en cuenta la dirección en el que se encuentra el racimo con el fin de evitar volcamiento en las plantas, ya sea por el peso del racimo o los vientos. Para el apuntalado o amarre se utilizó de 10 a 15 metros de cabuya por planta debido a la pendiente del terreno.
Figura: 17. Embolsado.

(Fuente: propia, 2016)

7.6.6 Cosecha

El proyecto tiene 340 plantas en 2.500 m² se espera que cada racimo tenga un peso de 50 a 60 kg (producción promedio de la zona), con un volumen de producción mínimo de 18 toneladas por cosecha y se tiene programado realizar dos cortes de forma escalonada. Se espera la primera cosecha para agosto y noviembre 2016 y se espera la segunda entre enero y marzo de 2017, se identificó el florecimiento de las plantas, se marcaron con una cinta de color específico estableciendo el número se semanas a la que floreció, con el propósito de llevar un registro para la cosecha.

7.6.7 Poscosecha

Se espera obtener productos de categoría (Anexo # 13) extra, primera y la segunda. El producto se comercializará desmanado, lavado y verde en canastillas de polietileno, con una capacidad de 25 kg. Estas canastillas tienen un tamaño de 60 cm de largo y 30 cm de profundidad, las cuales son facilitadas por las cooperativas comercializadoras.
lugares donde se va a vender dicho producto; se espera que el banano presente unas características de calidad extra en un 50% de la producción, de primera un 30% y 20% de segunda.

7.7 CRONOGRAMA DE ACTIVIDADES

El cronograma de actividades fue realizado con base al plan de manejo técnico y las necesidades del cultivo (Anexo # 14).

7.8 PLAN DE MANEJO TÉCNICO

Las actividades en el cultivo de banano se ejecutaron mediante el plan de manejo (Anexo # 15) y el cronograma de actividades. Se identificaron las posibles problemáticas, oportunidades, estrategias y de acuerdo con las etapas fisiológicas de la planta, se le suministró los nutrientes y el manejo adecuado para obtener un buen desarrollo, sin dejar de lado la aplicación de las buenas prácticas agrícolas

7.9 Implementación de las BPA (Buenas Prácticas Agrícolas)

Las buenas prácticas agrícolas (BPA): son una forma específica de producir productos agropecuarios, garantizando la inocuidad de los alimentos, la seguridad de las personas, el bienestar animal, la conservación del ambiente, buen manejo y uso de los insumos agrícolas (Luther, 2007). Entre las buenas prácticas agrícolas que se implementaron se pueden resaltar las siguientes:
Manejo de residuos líquidos: Las aguas residuales del proceso de aplicación, desinfección o lavado de herramienta, fueron de uso racional para prevenir la contaminación a fuentes hídricas, se realizó un filtro de arena, grava y piedra para evacuar los residuos, además se utilizaron productos (yodo, clodos) que generan un mínimo impacto negativo.

Manejo del suelo: No se aplicaron herbicidas para disminuir la contaminación ambiental y evitar la pérdida del suelo por erosión y otros factores, esto con el fin de garantizar que este conserve las características físicas, biológicas y químicas, por medio de los residuos vegetales. Además, se aplicó cal, materia orgánica, y residuos del cultivo. Las labores de labranza en el lote fueron mínimas, conservando la estructura del suelo.

Manejo de agroquímicos: Se cuenta con los elementos de seguridad (pantalón, camisa, guantes de nitrilo, gorro, tapabocas, careta y gafas), para realizar las diferentes actividades, además se cuenta con un lugar aislado e identificado, donde se conservan las herramientas e insumos, a este lugar sólo tiene autorización de ingreso el personal que se encuentra capacitado para solucionar cualquier adversidad que se presente.

Los productos utilizados fueron de categoría II mitigando el impacto ambiental (Anexo # 16)

Identificación de las zonas en el sistema productivo

El lote está ubicado a 2 metros de la casa de la finca La Sara y a 10 metros se encuentra la instalación donde se almacenan los agroquímicos, insumos, herramientas y donde se maneja el registro de las actividades y la preparación para aplicaciones.
El lote presenta una pendiente de 20°, en el centro del lote se encuentran 4 árboles de nogal que han sido la causa limitante en el crecimiento y desarrollo de 10 plantas de banano, debido a la competencia por agua, nutrientes y luz solar.

Figura: 18. Identificación de zonas en el sistema productivo.
(Fuente: propia, 2015)

Manejo de residuos sólidos

Los envases de los agroquímicos utilizados en el proyecto se almacenan en un lugar cerrado, se hace un triple lavado, perforación y luego se llevan a un centro de recolección de estos mismos para que sean recogidos por Campo Limpio.

Las estopas que es el mayor residuo donde es empacado el fertilizante, se lavan y se guardan con el fin de reutilizarlas o que sean usadas en actividades como recolección de basuras.

8 COMPONENTE DE INVESTIGACIÓN
La investigación que se realizó durante la ejecución del proyecto fue de tipo social, esta tuvo como objetivo realizar una caracterización agrícola y social en la vereda Palestina, evaluando la influencia de la producción de banano, se realizó una encuesta (Anexo # 17) sobre los aspectos sociales, económicos y productivos más relevantes en la vereda, empleando la metodología SENA, (2012) y para la toma de datos se entrevistaron 28 productores.

Los resultados más relevantes o conclusiones que arrojo la investigación fueron las siguientes:

- los productores de la vereda tienen en promedio 61 años de edad, y 5 de cada 10 productores es mayor de 60 años, la mano de obra es muy deficiente y cultivan con sus conocimientos empíricos por lo tanto sus productos no son competitivos, esto muestra la poca presencia de jóvenes para laborar el campo.

![Gráfica 1. Edad de los productores.](Fuente: propia, 2016)
• De los 28 solo 2 de 10 son bachilleres y en promedio su grado de escolaridad es 5.

Grafica 2. Grado de escolaridad de los productores.
(Fuente: propia, 2016)

• En promedio cada productor tiene 3,4 hijos de los cuales 5 de 10, tienen 4 hijos o más la mayoría no viven con ellos.

Grafica 3. Cantidad de hijos de los productores.
(Fuente: propia, 2016)

• Los productores en su gran mayoría tienen alrededor 2 y 4 hectáreas y 7 de 10 productores tienen menos de 3 ha.
• Su extracto socioeconómico es de 2, lo que según el DANE es un nivel de vida bajo.

• Ninguno de los productores maneja seguro agrario e incluso 5 de cada 10 productores no tiene conocimientos de estos.

• 0,4 de 10 productores maneja tierras bajo arrendamiento.

• 7 de cada 10 productores afirman que han disminuido sus áreas de producción, 2 de 10 se han mantenido estables y solo 1 de 10 ha aumentado el área.

• Solo 3 de 10 productores tienen áreas dedicada a la protección de fuentes hídricas.

• Solo 8 tienen área dedicada a la protección de fuentes hídricas.

• De los productores solo 1 de 10 trabajan con bovinos.

• 3 de 10 de productores manejan el monocultivo del café, 6 de 10 el policultivo asociado con musáceas y solo 1 de 10 maneja otro cultivo.

![Grafica 4. Cultivos de la vereda.](image)
(Fuente: propia, 2016)

- 0,7 de 10 productores manejan los cultivos de forma tecnificada
- 9 de 10 productores venden sus productos a las cooperativas.
- 3 de 10 productores dicen ser rentables, 1 de 10 dicen que no lo son y 6 de 10 no saben.
- Los agricultores dicen sembrar estos cultivos por cuatro motivos: 3 de 10 por cultura, 1 de 10 por conocimiento, 3 de 10 por garantía de compra y 3 de 10 porque es lo que se produce en la zona (condiciones climáticas).
- 9 de 10 productores afirman que les gustaría sembrar otros tipos de cultivo diferentes al café y que no lo hacen por falta de recursos y desconocimiento en el manejo de los mismos.
- De los productores 2 de 10 utilizan tecnologías con bombas a motor, guadañas y elementos de esta índole.
- 0,33 productores de 10 le dan valor agregado a su producto (produce panela).
- 9, 67 de 10 productores de café realiza aplicaciones para el control de la broca
- 4 de 10 productores tienen agua de acueducto, 2 de 10 cuentan con agua propias (tomadas de las quebradas) y 4 de 10 cuenta con ambas.
- Solo 3 de 10 personas cuentan con pozo séptico para el tratamiento de aguas residuales y 7 de 10 las vierten a las parcelas o quebradas.
• 4 de 10 trabajan sus cultivos con obreros y 6 de 10 con mano de obra propia; y además predomina la mano de obra familiar puesto que 9 de 10 personas manejan mano de obra familiar

• De los productores 5 de 10 tienen deudas económicas asociadas a sus cultivos.

• Solo 2 de 10 productores tenían conocimiento sobre las BPA (Buenas Prácticas Agrícolas).

• 4 de 10 de ellos plantean que para mejorar su nivel de calidad de vida necesitarían más área para producir, 5 de 10 dicen que necesitan auxilios del gobierno y 1 de 10 que haya garantías de compra y que suban los precios de los productos.

En la zona el grado de escolaridad es de 5 lo que significa que es bajo, ya que según el DANE en Colombia el promedio es 9, esta situación puede ser dada porque en la vereda el promedio de edad de los productores es de 61 años; el estrato socio económico de los productores es 2 y según el DANE es un nivel de vida bajo. En la vereda las parcelas oscilan entre 2 y 4 ha y el área de la unidad agrícola familiar (UIA) en Andes, Antioquia es de 5 a 8 ha (finkeros.com, 2012), además en la vereda por esta razón los índices de arrendamientos de tierras son bajos (0,4 de 10 de productores manejan tierras en arriendo). La mayoría de las tierras son adquiridas por herencia (9,3 de 10) y de estas el 70% han disminuido su área de producción. De los productores 3 de 10 dedican área a la protección de las fuentes hídricas y por el contrario 7 de 10 vierten sus aguas sucias a las parcelas o fuentes. En la vereda 1 de 10 productores siembran algo diferente y 1 de 10 maneja bovinos, lo que según la FAO (2012) pone en riesgo la seguridad alimentaria, la producción en la vereda es de forma empírica ya que solo 0,7 de 10 trabajan de forma tecnificada, 5 de 10 productores tienen deudas económicas y 5 de 10
dicen que requieren ayuda del gobierno. La zona es de producción familiar y 9 de 10 les gustaría sembrar otros cultivos y no lo hacen por falta de conocimiento.

8.1 Necesidades de investigación en la zona

Una de las grandes necesidades que tiene la vereda Palestina según la encuesta de la investigación es falta de conocimiento en la implementación de otros cultivos, puesto que la gente siembra por cultura y por conocimiento en ese cultivo; se requiere implementar otros cultivos para evaluar sistemas de siembra, distancias, manejo de fertilización y de plagas y enfermedades.

Otra necesidad de investigación que requiere la comunidad es la evaluación de métodos de controles de las enfermedades Fusarium y Elefantiasis, puesto que hasta el momento no hay un protocolo científicamente evaluado para su control.

9 COMPONENTE DE LIDERAZGO SOCIAL, POLÍTICO Y PRODUCTIVO

La ejecución del proyecto impactó de una manera positiva, se han logrado evidenciar aspectos como:

- Interés en aprender de actividades del cultivo
- Implementación de otros cultivos
- Liderazgo por mujeres.
✓ Interés por conocer lo que ocurre en el desarrollo del proyecto.

Los agricultores han visitado el proyecto, observando, comparando y evaluando las ventajas y desventajas de la implementación de los cultivos de musáceas. De esta los agricultores han estado tomando algunas decisiones y realizando algunas prácticas particulares diferentes a las cotidianas. Se ha tenido la experiencia de realizar acompañamiento en la siembra y asistencia técnica en el manejo agronómico de varios cultivos (café, banano, plátano, yuca, maíz).

Los habitantes observan el efecto del manejo y la aplicación de los conocimientos en el desarrollo del cultivo, se realizaron talleres (Anexo # 18) con las madres de familia para no abandonar las costumbres cotidianas como tener la huerta familiar y trabajar con sus hijos además se estuvo motivando a los niños y los pocos jóvenes que hay en la vereda incentivándolos a no abandonar el campo y dándoles a conocer la importancia que tiene trabajar e invertir en la tierra y las grandes ventajas que esto ofrece. Se realizaron talleres con la J.A.C dándoles a conocer los mecanismos de productividad y el aprovechamiento de los recursos, despertando el interés en el campo.

El sector agrícola es de gran importancia, por ende, se debe transferir conocimientos agrícolas aplicados en campo mediante “un proceso de facilitación de la adquisición de conocimientos y destrezas, más que de transferencia de tecnología. La extensión facilita el contacto directo con los agricultores, proveedores de servicios, agentes de comercialización y otros actores económicos y sociales del medio rural” (FAO, 2004)

La extensión rural se está llevando a cabo en esta zona, mediante la aplicación del método grupal: “Son los métodos más empleados debido a que se puede atender una cantidad mayor de productores, cuando hay pocos extensionistas en la zona y cuando los recursos no son suficientemente flexibles” (Fundación Manuel Mejía, 2013). La
demostración de resultados es: “ver para creer” o “hacer y ver para creer”. Los resultados convencen con efectividad, costos y ganancias.

También se realizó acompañando a un grupo conformado de 10 personas en un taller del SENA dándole valor agregado a las musáceas, donde se sacaron varios productos como: snack, colada, harina, patacón, empanada a la venta en la vereda y en el municipio de Andes donde ha sido un proyecto élite y es el punto de enfoque por el cual las personas se han interesado en participar y establecer musáceas en la vereda, además del gran acompañamiento que está realizando el SENA apoyando al sector agrícola de la comunidad.

El propósito de este proyecto productivo es liderar y continuar con el proyecto de valor agregado a las musáceas en la vereda Palestina, promoviendo el interés de los niños, jóvenes, adultos y amas de casa en participar de este gran proyecto y a los agricultores en establecer musáceas ya que la materia prima se le estará comprando a ellos. Además, darles a conocer herramientas sobre el campo científico y la vida profesional en grupo buscando soluciones a los problemas de la zona, realizar actividades en el manejo agronómico y demostrar que no solo café se puede obtener en la región, que en otras especies se puede hallar un gran potencial y aclarar que el sexo femenino no es una debilidad que todo lo que se propone siempre se puede lograr.
10 COMPONENTE DE EMPRESARIZACIÓN DEL CAMPO

10.1 IMPORTANCIA ECONÓMICA DEL CULTIVO

El cultivo de banano en Colombia ha sido históricamente importante como renglón generador de divisas, empleo y un componente básico para la seguridad alimentaria y nutricional de miles de familias que se dedican a esta actividad productiva. El cultivo de banano en Antioquia se explota entre Chigorodó, Apartadó y Turbo, en el golfo de Urabá (AUGURA, 2010).

El sector bananero juega un papel importante en la economía de las regiones de Urabá y Magdalena. En la región de Urabá todas las actividades productivas giran en torno al negocio de producir y exportar banano. En ambas regiones existe una alta dependencia económica de la actividad bananera (AUGURA, 2010).

10.2 cultivo de banano en Colombia

Las principales comercializadoras de Banano en Colombia son, en orden de participación en el mercado: Uniban, Proban (filial de Dole Foods), Banacol, Banadex (filial de Chiquita Brands), Sunisa, Bagatela, Conserba (filial de Fresh del Monte), Banafruit, Tropical y Tecbaco (Ministerio de Agricultura y Desarrollo Rural, 2005).

Las regiones del Golfo de Urabá y el nororiente del departamento del Magdalena se han especializado en la producción y exportación de banano y plátano, con altos niveles de productividad. El banano de exportación en Colombia se realiza en dos zonas: la primera en la zona de Urabá donde se cultivan cerca de 31.000 has con condiciones ambientales de bosque muy húmedo pluvial montano y bosque húmedo tropical, según
la clasificación de Holdridge y la segunda en la zona del Magdalena. (Ministerio de Agricultura y Desarrollo Rural, 2005).

La agroindustria bananera genera en Colombia cerca de 23.200 empleos directos y 70.000 empleos indirectos. Posicionándose como el tercer cultivo de exportación en Colombia en cuestión de divisas, pero en toneladas es el cultivo más exportado con 1.578.112 toneladas (ASBAMA, 2014).

13.1.5 Comportamiento del precio del banano en el comercio nacional

De acuerdo con la FAO, la producción de banano corresponde aproximadamente al 12% del total de frutas en el mundo en términos de volumen. El consumo mundial de banano se concentra en un grupo de países: Estados Unidos, Unión Europea, Japón, Rusia y China. El 20% de la producción mundial de banano se destina al comercio mundial, hecho que lo convierte junto con las manzanas, las uvas y los cítricos, en el conjunto más importante de productos frutícolas comercializados en el mundo (Ministerio de Agricultura y Desarrollo Rural, 2005).

13.1.6 Usos de subproductos después de la cosecha

En algunas regiones como el Urabá, Magdalena y Eje Cafetero se produce harina, tanto de banano, como de plátano. Esta harina se utiliza en refrescos, sopas y para hornear. Las musáceas también son utilizadas para la producción de vinagre y la fabricación de bebidas alcohólicas. Sus flores se pueden consumir como verdura, previa
cocción breve en agua de sal para extraer las sustancias amargas. Además, sirve para forraje con un alto contenido de almidón, por ejemplo, en el engorde de cerdos. Las hojas frescas tienen un alto contenido proteínico y por su rico sabor son muy apreciadas por rumiantes y gallinas. Las hojas, además, se utilizan como material de embalaje y como cobertura de techos, y junto con su pseudotallo forman una excelente cobertura del suelo (materia orgánica) (AUGURA, 2010).

10.3 COMERCIALIZACIÓN

El municipio de Andes tiene una demanda de 562.5 toneladas/año, pero el mercado de la compra es para llevarlo a las ciudades principales, donde la demanda es mucho más alta. Se proyecta que la producción del proyecto será de 36 toneladas/año, en lo cual el mercado no se saturará con la producción. Se cuenta con puntos de venta que fácilmente pueden comprar semanalmente 15 toneladas o más, debido a que este producto no tiene limitaciones mientras cumpla los estándares de calidad. El producto tendrá un solo canal de comercialización: las cooperativas San Juan y COMSAB, lo que indica que el 100% del producto se venderá por dicho canal, ya que es el que más ventajas ofrece, el que mejor se adapta a las condiciones del proyecto y a la cantidad que se producirá.

El canal de comercialización (Anexo # 19) está compuesto por el productor, el intermediario (Cooperativa San Juan y Cooperativa COMSAB), este le vende a un mayorista (Central Mayorista de Medellín) y también algunos detallistas les venden directamente a los consumidores. Vale resaltar que el proyecto solo tendrá relación y responsabilidad hasta que el producto llegue al intermediario.
Las ventajas de este canal es que se economiza el transporte, se disminuyen los riesgos con el producto, los precios son justos, ellos lo distribuyen, no se necesita pagar ni cargue ni descargue del producto, se ahorra tiempo, no se requiere buscar mercados y el tiempo que tardan en pagar el producto no es superior a 10 días.

Las cooperativas del municipio son las que regulan los precios de venta, ya sea para los productores de la zona como para los intermediarios. Estos precios están directamente relacionados con el grado de calidad del producto (Anexo # 13), el momento de la venta que es en la verdad.

La presentación del banano se establecerá en canastillas de 25 Kg y los precios pueden estar entre $400 y $800 el kg dependiendo de la época del año. Los precios aumentan en la época de cosecha de café (septiembre, octubre y noviembre) y baja en la temporada de vacaciones de los estudiantes: diciembre, junio y Semana Santa.

10.3.1 Transporte

El lote se encuentra a 2 m de la casa de la finca y la carretera principal a 1km, donde llega el carro sin problema alguno. Las cooperativas (COMSAB y San Juan) comercializadoras hacen compra de los productos en cualquier día de la semana, el transporte llegará a la finca cada vez que haya producto para la venta y lo lleva directo a la cooperativa. Este no tiene ningún costo debido a que es una estrategia que realizan para tener clientes.
23.2 MERCADEO

Cuando se realizó el estudio de mercado se evidenció que el banano para el municipio de Andes cuenta con una serie de postores para su compra lo que motiva a la implementación de este cultivo. Se ha evidenciado que los mejores clientes para el producto son las dos cooperativas que hacen presencia en la zona y para afianzar la relación con ellas el camino es la asociación, la cual tiene un costo de $70.000.

10 ANÁLISIS FINANCIERO

El proyecto está financiado por la Universidad de La Salle y por el Fondo Apasionados por la Tierra.

Se presenta el flujo de caja en trimestres, del cual se puede evidenciar que la mayoría de los gastos fueron en el primer trimestre.

Analisis financiero

<table>
<thead>
<tr>
<th>TRIMESTRE</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGRESOS</td>
<td>$4.565.050</td>
<td>$859.200</td>
<td>$625.000</td>
<td>$636.666</td>
<td>$1.000.000</td>
<td>$270.000</td>
<td>$240.000</td>
</tr>
<tr>
<td>INGRESOS</td>
<td></td>
<td></td>
<td></td>
<td>$6'480.000</td>
<td>$8'640.000</td>
<td></td>
<td>$6.480.000</td>
</tr>
<tr>
<td>TOTAL FLUJO DE</td>
<td>$4.565.050</td>
<td>$859.200</td>
<td>$625.000</td>
<td>$636.666</td>
<td>$5.480.000</td>
<td>$8.370.000</td>
<td>$6.240.000</td>
</tr>
</tbody>
</table>
Para realizar el análisis financiero se tuvo en cuenta los indicadores TIR (Tasa Interna de Retorno), VAN (Valor Actual Neto) o VNP (Valor Neto Presente) y la relación B/C (Costo / Beneficio) (Anexo # 21). Y arrojaron los siguientes resultados, todos los indicadores afirman que el proyecto es viable económicamente, la siguiente tabla presenta los indicadores económicos del proyecto.

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR</td>
<td>28%</td>
</tr>
<tr>
<td>VAN</td>
<td>$ 6.671.824</td>
</tr>
<tr>
<td>TASA DE INTERES</td>
<td>9%</td>
</tr>
<tr>
<td>Relación beneficio/ costo</td>
<td>2.64</td>
</tr>
</tbody>
</table>

Tabla 2. Indicador económico

(Fuente: propia, 2016)

La siguiente grafica muestra la distribución de los costos durante la ejecución del proyecto.
Grafica 5. Distribución de costos.

(*Fuente: propia, 2016*)

En la anterior grafica se presenta la distribucion de los costos del proyecto, entre estos se puede destacar que los costos más relevantes fueron la mano de obra, los insumos y el arriendo de la tierra.

11.1 IDENTIFICACIÓN DE OPORTUNIDADES DE NUEVOS EMPRENDIMIENTOS

Existe un potencial en la zona de generar valor agregado por medio de la agroindustria; ya que en la zona se están sembrando grandes áreas en platano y banano, lo que sería una gran oportunidad el poderlo procesar para alargar su vida útil, aumentar ingresos y dar un gran apoyo a los productores de la vereda garantizándoles la compra del producto.
11.2 IDENTIFICACIÓN DE ORGANIZACIONES O ACTORES QUE PUEDAN SERVIR DE ALIADOS

En el municipio de Andes se pueden encontrar una serie de actores que si se logra alianza con ellos se puede formar una sinergia que potencializa el proyecto significativamente.

La razón de ser del proyecto es la gente que lo rodea y a quienes de forma directa o indirecta puede ayudar a mejorar su calidad de vida.

Proveedores: entre los proveedores se puede destacar la presencia de Comsab (Cooperativa Agromultiactiva San Bartolo) que maneja productos y herramientas de los más actuales en el mercado y que además de esto brinda asesoría en los cultivos para aumentar la eficiencia. Otro proveedor es Agrovélez, que cuenta con una alta gama de productos para el campo y generan confianza a la hora de comprarles, de esta tienda el proyecto ha adquirido una serie de elementos para su ejecución. Otro de los proveedores es Cooperandes (Cooperativa de Caficultores de Andes), esta empresa cuenta con una cantidad de productos para el campo y es uno de los puntos más económicos, en dicho local se ha conseguido la mayoría de los agroinsumos.

Otro provedor clave en la implementación fue la finca La Luz, quien además de ser el lugar que proporcionó el material vegetal ha prestado sus instalaciones y plantaciones para realizar prácticas de campo.

Instituciones: entre las instituciones podemos resaltar a dos que no tienen relacion directa con el proyecto que son Corantioquia y la Alcaldía de Andes, la corporación
autónoma regional de esta región es la encargada de hacer cumplir la normatividad ambiental, la cual el proyecto respeta y la Alcaldía es la gestora y administradora de los recursos del Municipio. Hay otras instituciones que sí han tenido relación directa con el proyecto, como lo es: el Banco Agrario de Colombia, el SENA y la Universidad de la Salle; el Banco Agrario es la entidad encargada de realizar los traspaso de dinero entre la universidad y el proyecto; el SENA es un vínculo muy importante para el proyecto porque ha sido el encargado de ayudar a conocer proyectos, En convenio con esta institución se han realizado prácticas de extensión rural y además con esta también se está formando una microempresa en la transformación de musáceas; y la Universidad de La Salle que es la creadora de todo esto, quien acompaña y financia su ejecución.

Clientes: los clientes son la parte base y son aquellos actores que se identificaron cuando se estaba realizando el estudio de mercado. Estas dos cooperativas San Juan y Comsab son las postoras a comprar el producto, puesto que brindan las garantías necesarias para venderles y el producto presenta las condiciones de calidad exigidas por el mercado.

Comunidad: con respecto a la finca La Luz es gratificante trabajar con ellos porque se vuelve muy interesante poder comparar lo que ellos le hacen al cultivo, con lo que uno hace y poner en discusión ambos criterios para enriquecer las charlas. El proyecto ha tenido una gran aceptación por los agricultores de la zona y se ve cómo ellos han venido cambiando su forma de hacer sus labores. Definitivamente es muy gratificante poder ver cómo todo el esfuerzo no está siendo tirado a la nada, sentir cómo con estas personas se puede trabajar y que a pesar de que al principio no me creían por ser mujer. Hoy en día han cambiado de parecer y confían en mí; todos estos avances han sido en gran parte a la JAC (Junta de Acción Comunal) que desde el principio me acogió y me apoyó en dar a conocer a la comunidad lo que se está haciendo en el proyecto, para dar
a enterner que hay otras formas de hacer agricultura y que sí se puede. La escuela o mejor dicho los chicos que en ella estudian se han convertido en punto estratégico para enseñarles, puesto que son el futuro del campo y a los que se les debe de dar el mejor de los ejemplos posibles; de la mano de la líder del grupo de la tercera edad he recibido mucho apoyo y he tenido la oportunidad de trabajar con los adultos mayores. Con ellos es un poco difícil que implementen las nuevas técnicas de trabajo, pero sin embargo algunos lo han hecho; lo más enriquecedor de todo es que tiene una amplia experiencia en campo y un gran conocimiento empírico, que hace que haya una relación recíproca de aprendizaje.

11.3 EVALUACIÓN DE LA CONTINUACIÓN DEL PROYECTO PRODUCTIVO

Haciendo un análisis de mercado evidentemente todo apunta a que no se debe continuar expandiendo el área del proyecto, ya que se está plantando nuevas área (según las cooperativas comercializadoras el área sembrada ha aumentado en un 60%) en estos cultivos, por el ejemplo del proyecto y por los altos precios del producto en la actualidad ($850/kg); se continuara con el área que se tiene y se le dará todo el manejo necesario para potencializar sus volúmenes de producción.
12 CONCLUSIONES

- Las buenas relaciones con las entidades públicas, privadas y los agricultores de la región fueron fundamentales para la gestión de los recursos necesarios para el éxito del proyecto.
- La elaboración de un plan de manejo técnico y su oportuna ejecución permite identificar los problemas a tiempo para brindar las soluciones oportunas.
- Para la vereda Palestina el tiempo que tarda una planta de banano variedad Gros Michel para emitir el racimo son 13 meses.
- La transferencia de conocimientos científicos debe estar ligado a los conocimientos empíricos de los agricultores y la forma mejor forma de hacer extensión rural en Palestina es el método individual.
- La implementación de las buenas prácticas agrícolas en el cultivo de banano permite disminuir los impactos ambientales y contribuye a la conservación de los agroecosistemas.

13 BIBLIOGRAFÍA

• Copropiedad Central Mayorista de Antioquia, 2013 Precios y Volúmenes de Abastecimiento, Gráficos de productos y análisis del Mercado. Itagüí 2014

• Recuperado de:

• Ruiz, X. (2012). Guía análisis DOFA. Universidad Nacional de Colombia, sede Bogotá. Versión 0.1. Recuperado de:
 www.bogota.unal.edu.co/anterior/objects/.../Guia_Analisis_DOFA.pdf

14 ANEXOS

Causas y efectos del problema.

Anexo#1. (Fuente: propia, 2016)

Condiciones edafoclimáticas del cultivo de banano

<table>
<thead>
<tr>
<th>Condiciones recomendadas del banano</th>
<th>Condiciones del lote del proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitud</td>
<td>0 - 1000 msnm</td>
</tr>
<tr>
<td>Altitud</td>
<td>1.328 msnm</td>
</tr>
<tr>
<td>Temperatura</td>
<td>17 a 29ºc.</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Precipitación</td>
<td>2.500 mm anuales</td>
</tr>
<tr>
<td>Vientos</td>
<td><20 km /h</td>
</tr>
<tr>
<td>Brillo solar</td>
<td><4 horas</td>
</tr>
<tr>
<td>Pendiente</td>
<td>1%</td>
</tr>
<tr>
<td>Profundidad efectiva</td>
<td>1,2-1,5 m</td>
</tr>
<tr>
<td>Textura</td>
<td>Fr</td>
</tr>
<tr>
<td>pH</td>
<td>5,5-6,6</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>70-80%</td>
</tr>
</tbody>
</table>

Anexo # 2 (Fuente: UCO, 2012)

Mapas del departamento de Antioquia y el municipio de Andes, en cual se resalta la vereda Palestina donde está ubicado el proyecto.
Anexo # 3 *(Fuente: Universidad de Antioquia. Modificado por Velásquez, 2016)*

Fauna y flora de la vereda

<table>
<thead>
<tr>
<th>Fauna</th>
<th>Flora</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Común</td>
<td>Género</td>
</tr>
<tr>
<td>Turpial</td>
<td>Euphonia</td>
</tr>
<tr>
<td>Hormiga arriera</td>
<td>(Atta sp.)</td>
</tr>
<tr>
<td>Azulejos</td>
<td>Thraupis</td>
</tr>
<tr>
<td>Picaflor o colibrí</td>
<td>Amazilia</td>
</tr>
<tr>
<td>Carpintero</td>
<td>Colaptes</td>
</tr>
<tr>
<td>Cucaracheros</td>
<td>Troglodytes</td>
</tr>
<tr>
<td>Tórtolas</td>
<td>Leptotila</td>
</tr>
</tbody>
</table>

Anexo # 4. *(Fuente: Admón municipal de Andes ,2015).*
Bosques y fuentes hídricas de andes

<table>
<thead>
<tr>
<th>Bosques</th>
<th>Área /ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Rita</td>
<td>4.213</td>
</tr>
<tr>
<td>Santa Inés</td>
<td>5.385</td>
</tr>
<tr>
<td>Tapartó</td>
<td>3.823</td>
</tr>
</tbody>
</table>

Fuente hídrica

<table>
<thead>
<tr>
<th>Ríos</th>
<th>Tapartó, Guadualejo, Santa Rita, Bolívar, El Barroso y Río Claro.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quebradas</td>
<td>Santa Bárbara, Chaparrala, Cañaverala y Remolina.</td>
</tr>
<tr>
<td>Laguna</td>
<td>En el cerro de Caramanta a 3.650 msnm.</td>
</tr>
</tbody>
</table>

Anexo # 5. (Fuente: Admón. municipal de Andes, 2015).

Actividades económicas de Andes-Antioquia

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Área/ha</th>
<th>Pecuaria</th>
<th>Área</th>
<th>%</th>
<th>Café</th>
<th>Dato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Café</td>
<td>8.669</td>
<td>Bovino</td>
<td>4.933</td>
<td>28.1</td>
<td>7</td>
<td>Veredas 63</td>
</tr>
<tr>
<td>Musáceas</td>
<td>2.305</td>
<td>Porcinos</td>
<td>1.359</td>
<td>23.7</td>
<td>5.16</td>
<td>Fincas 6</td>
</tr>
</tbody>
</table>
Características climáticas y edafoclimáticas

CARACTERÍSTICAS CLIMÁTICAS (ALCALDÍA MUNICIPAL, 2015)

<table>
<thead>
<tr>
<th>Latitud</th>
<th>5° 39' 29" N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>75° 52'51" O</td>
</tr>
<tr>
<td>Altitud</td>
<td>1.300 m.s.n.m</td>
</tr>
<tr>
<td>Temperatura</td>
<td>16 a 28°C</td>
</tr>
<tr>
<td>Brillo solar</td>
<td>3.6, 5.5</td>
</tr>
<tr>
<td>Precipitación</td>
<td>4,3</td>
</tr>
<tr>
<td>Textura</td>
<td>Arcilloso</td>
</tr>
<tr>
<td>Topografía</td>
<td>Pendiente</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>70%, 85%</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS EDAFOCLIMÁTICAS DEL LOTE

| Altitud | 1.328 m.s.n.m |
| Humedad relativa | 70%, 85% |

Anexo # 6. (Fuente: Admón municipal de Andes, 2015).

Características de la población de Andes-Antioquia

<table>
<thead>
<tr>
<th>Características de la población</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Área urbana</td>
<td>2.5 Km2</td>
</tr>
<tr>
<td>Ext. Área rural</td>
<td>441.5 Km2</td>
</tr>
</tbody>
</table>

Anexo # 7. (Fuente: análisis de suelo Universidad La Salle, Admón. municipal, 2016)
Total extensión 441.5 Km2

Tipo de identidad Municipal

Porcentaje del departamento (km²) 0,70%

Densidad poblacional por km2 102

Región de regalías Eje Cafetero

Gentilicio Andinos

Rural 23.147

No. Hombres 22.980

No. Mujeres 21.298

Zona urbana 88.3%

Zona rural 80.1%

Mestizos y blancos 98,2%

Afrocolombianos 1,6%

Indígenas 0,2%

COBERTURA casco urbano 95%

COBERTURA sector rural 100%

Casco urbano 2%

Sector rural 98%

Anexo # 8. (Fuente: Admon municipal de Andes, 2015).

Sociograma del municipio de Andes

Anexo # 9. (Fuente: propia, 2016).

Identificación de organizaciones o actores que puedan servir de aliados
Anexo # 10. (Fuente: propia, 2016)

Resultado del análisis de suelo

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>RANGO ADECUADO</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4.31</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PATRÓN ORSA</td>
<td>6.02</td>
<td>%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>U BORAX</td>
<td>15.40</td>
<td>ppm</td>
<td>0.00 - 28.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>SÓDIO (Na)</td>
<td>0.62</td>
<td>mg/100 g</td>
<td>0.00 - 0.80</td>
<td>MEDIO</td>
</tr>
<tr>
<td>CLORO (Cl)</td>
<td>1.32</td>
<td>mg/100 g</td>
<td>0.00 - 1.50</td>
<td>BAJO</td>
</tr>
<tr>
<td>ALUMINIO (Al)</td>
<td>5.18</td>
<td>mg/100 g</td>
<td>0.00 - 5.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>BICARBÓN (HCO₃)</td>
<td>7.09</td>
<td>mg/100 g</td>
<td>0.10 - 0.40</td>
<td>ALTO</td>
</tr>
<tr>
<td>CALCIO (Ca)</td>
<td>11.77</td>
<td>ppm</td>
<td>0.00 - 20.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>POTÁSIO (K)</td>
<td>173.61</td>
<td>ppm</td>
<td>0.00 - 20.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>NITRATO (NO₃)</td>
<td>7.98</td>
<td>ppm</td>
<td>0.00 - 0.40</td>
<td>MEDIO</td>
</tr>
<tr>
<td>CO2</td>
<td>8.09</td>
<td>ppm</td>
<td>0.00 - 2.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>ESQUIVE</td>
<td>21.63</td>
<td>ppm</td>
<td>0.00 - 10.00</td>
<td>BAJO</td>
</tr>
</tbody>
</table>

RELACIONES CATÓNICAS

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>RANGO ADECUADO</th>
<th>RESULTADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺</td>
<td>2.92</td>
<td>%</td>
<td>0.00 - 6.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>K⁺</td>
<td>5.58</td>
<td>%</td>
<td>0.00 - 15.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>Na⁺</td>
<td>2.34</td>
<td>%</td>
<td>0.00 - 15.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>13.52</td>
<td>%</td>
<td>0.00 - 40.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>Sr²⁺</td>
<td>3.95</td>
<td>%</td>
<td>0.00 - 5.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>Ba²⁺</td>
<td>26.34</td>
<td>%</td>
<td>0.00 - 50.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>16.13</td>
<td>%</td>
<td>0.00 - 70.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>18.12</td>
<td>%</td>
<td>0.00 - 50.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>Sr²⁺</td>
<td>77.52</td>
<td>%</td>
<td>0.00 - 50.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>Ba²⁺</td>
<td>15.75</td>
<td>%</td>
<td>0.00 - 50.00</td>
<td>MEDIO</td>
</tr>
</tbody>
</table>

Anexo # 11 (Fuente: Universidad de la Salle, 2014)

Aplicación de fertilizante en las diferentes fases del cultivo
Fraccionamiento de la fertilización

<table>
<thead>
<tr>
<th>fuente</th>
<th>Primera</th>
<th>Segunda</th>
<th>Tercera</th>
<th>Cuarta</th>
<th>Quinta</th>
<th>Sexta</th>
</tr>
</thead>
<tbody>
<tr>
<td>UREA</td>
<td>6,67</td>
<td>10,01</td>
<td>13,34</td>
<td>13,34</td>
<td>16,68</td>
<td>6,67</td>
</tr>
<tr>
<td>DAP</td>
<td>15,15</td>
<td>30,30</td>
<td>37,87</td>
<td>15,15</td>
<td>37,87</td>
<td>15,15</td>
</tr>
<tr>
<td>KCl</td>
<td>5,94</td>
<td>11,88</td>
<td>35,63</td>
<td>23,76</td>
<td>11,88</td>
<td>29,69</td>
</tr>
<tr>
<td>Borax</td>
<td>0,33</td>
<td>1,09</td>
<td>2,18</td>
<td>2,50</td>
<td>2,29</td>
<td>2,50</td>
</tr>
<tr>
<td>Suma</td>
<td>37,306</td>
<td>71,822</td>
<td>116,796</td>
<td>81,734</td>
<td>95,699</td>
<td>79,428</td>
</tr>
<tr>
<td>g/planta</td>
<td>116,582</td>
<td>224,444</td>
<td>364,987</td>
<td>255,419</td>
<td>299,059</td>
<td>248,212</td>
</tr>
</tbody>
</table>

Anexo # 12. (*Fuente: propia, 2016*).

Categorías del banano

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Longitud pulpa en cm</th>
<th>Perímetro en cm</th>
<th>Número de dedos por mano</th>
<th>Peso por dedo en gr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra</td>
<td>> 23</td>
<td>> 14</td>
<td>> 20</td>
<td>> 240</td>
</tr>
<tr>
<td>Categoría 1</td>
<td>20-23</td>
<td>12-14</td>
<td>16-19</td>
<td>180-239</td>
</tr>
<tr>
<td>Categoría 2</td>
<td>18-20</td>
<td>11-12</td>
<td>12-15</td>
<td>150-179</td>
</tr>
</tbody>
</table>

Cronograma de actividades
Anexo # 14. (Fuente: propia, 2014)

Plan de manejo técnico

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>TECNOLOGÍA A UTILIZAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividades preliminares</td>
<td>Selección del terreno , toma de muestras para el análisis de suelo</td>
</tr>
<tr>
<td>Actividades de resiembra</td>
<td>Visita al proveedor de la semilla,</td>
</tr>
<tr>
<td></td>
<td>Eliminación de plantas en el lote</td>
</tr>
<tr>
<td></td>
<td>Limpieza del lote (eliminación de residuos)</td>
</tr>
<tr>
<td></td>
<td>Elaboración de la bodega</td>
</tr>
<tr>
<td></td>
<td>Compra y transporte de cormos</td>
</tr>
<tr>
<td>Preparación del terreno</td>
<td>Trazado en tres bolillos y ahoyado</td>
</tr>
<tr>
<td></td>
<td>incorporación de cal y gallinaza</td>
</tr>
<tr>
<td>Actividades de siembra</td>
<td>Distribución de cormos en lote</td>
</tr>
<tr>
<td></td>
<td>Siembra y terráceo</td>
</tr>
<tr>
<td>Actividades de extensión</td>
<td>Reunión con la J.A.C., días de campo, talleres</td>
</tr>
</tbody>
</table>

| ACTIVIDAD | MAY | JUN | JUL | AGO | SEP | OCT | NOV | DIC | ENE | FEB | MAR | ABR | MAY | JUN | JUL | AGO | SEP | OCT | NOV | DIC | ENE | FEB | MAR | ABR | MAY | JUN | JUL | AGO | SEP | OCT | NOV | DIC | ENE | FEB | MAR | ABR | MAY | JUN | JUL | AGO | SEP | OCT | NOV | DIC |
|----------------------------------|
Anexo # 15 (Fuente: propia, 2014).

Productos utilizados

<table>
<thead>
<tr>
<th>Nombre comercial</th>
<th>Ingrediente activo</th>
<th>Producto</th>
<th>Dosis ml/l</th>
<th>Categoría tóxica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yodosafer</td>
<td>Yodo polivinil pirrrolidona</td>
<td>Desinfectante</td>
<td>5ml</td>
<td>N.A.</td>
</tr>
<tr>
<td>Clodos</td>
<td>Dióxido de cloro</td>
<td>Bactericida</td>
<td>50ml</td>
<td>III</td>
</tr>
<tr>
<td>Impact</td>
<td>Flutriafol: 125 g/l (RS)-2,4’-difluoro- a-(1H-1,2,4-triazol-1-ylmethyl)benzhydryl alcohol</td>
<td>Fungicida</td>
<td>N.A</td>
<td>II</td>
</tr>
<tr>
<td>Ráfaga</td>
<td>Pyricron</td>
<td>Insecticida</td>
<td>1 ml</td>
<td>II</td>
</tr>
</tbody>
</table>

Anexo # 16 (Fuente: propia, 2016)
MODELO DE ENCUESTA AGRÍCOLA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nombre del productor</td>
</tr>
<tr>
<td>2</td>
<td>Edad del productor</td>
</tr>
<tr>
<td>3</td>
<td>Grado de escolaridad</td>
</tr>
<tr>
<td>4</td>
<td>Numero de hijo</td>
</tr>
<tr>
<td>5</td>
<td>Área total (Hectáreas)</td>
</tr>
<tr>
<td>6</td>
<td>Extracto socioeconómico</td>
</tr>
<tr>
<td>7</td>
<td>¿Existe algún tipo de seguro agrario?</td>
</tr>
<tr>
<td>8</td>
<td>Propiedad o arrendamiento.</td>
</tr>
<tr>
<td>9</td>
<td>¿Cuál es el origen de estas tierras?</td>
</tr>
<tr>
<td>10</td>
<td>Aumenta o disminuye la productividad en los últimos años.</td>
</tr>
<tr>
<td>11</td>
<td>Tierras dedicadas a la protección hídrica</td>
</tr>
<tr>
<td>12</td>
<td>¿Se practica la ganadería asociada a la agricultura?</td>
</tr>
<tr>
<td>13</td>
<td>¿Monocultivo o policultivo?</td>
</tr>
<tr>
<td>14</td>
<td>Qué cultivo</td>
</tr>
<tr>
<td>15</td>
<td>¿Cómo se produce?</td>
</tr>
<tr>
<td>16</td>
<td>Utiliza innovaciones técnicas</td>
</tr>
<tr>
<td>17</td>
<td>Le da valor agregado al producto</td>
</tr>
<tr>
<td>18</td>
<td>Tipo de productos aplicados en las labores agrícolas</td>
</tr>
<tr>
<td>20</td>
<td>Procedencia del agua.</td>
</tr>
<tr>
<td>21</td>
<td>Tratamiento de aguas sucias</td>
</tr>
<tr>
<td>22</td>
<td>¿A quién vende la cosecha?</td>
</tr>
<tr>
<td>23</td>
<td>¿Es un producto rentable?</td>
</tr>
<tr>
<td>24</td>
<td>Porque siembra es cultivo</td>
</tr>
<tr>
<td>25</td>
<td>Que cultivo le gustaría sembrar</td>
</tr>
<tr>
<td>26</td>
<td>Utiliza tecnologías</td>
</tr>
<tr>
<td>27</td>
<td>Tipo de mano de obra</td>
</tr>
<tr>
<td>28</td>
<td>Existe mano de obra familiar</td>
</tr>
<tr>
<td>29</td>
<td>Tiene deudas</td>
</tr>
<tr>
<td>30</td>
<td>Ha pensado en vender su finca</td>
</tr>
<tr>
<td>31</td>
<td>Conoce las BPA (Buenas Prácticas Agrícolas)</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>32</td>
<td>Qué cambios, según usted, mejorarían su nivel de vida</td>
</tr>
</tbody>
</table>

Anexo # 17. *(Fuente: SENA, 2012, Modificado por Velásquez, 2016)*

Talleres con los agricultores de la vereda

![Image of talleres](image1.png)

Anexo # 18 *(Fuente: Velásquez, 2015)*

Canal de comercialización
Anexo # 19. (Fuente: propia, 2014)

Listado de asistencia de capacitaciones

Anexo # 20. (Fuente: propia, 2014)