Implementación de un cultivo de sandía (Citrullus lanatus L.) como herramienta de emprendimiento social, político y productivo en el municipio del Valle de Guamuez Putumayo

Anderson Arley Delgado Toro
Universidad de La Salle, Yopal, Casanare

Follow this and additional works at: https://ciencia.lasalle.edu.co/ingenieria_agronomica

Citación recomendada

This Trabajo de grado - Pregrado is brought to you for free and open access by the Facultad de Ciencias Agropecuarias at Ciencia Unisalle. It has been accepted for inclusion in Ingeniería Agronómica by an authorized administrator of Ciencia Unisalle. For more information, please contact ciencia@lasalle.edu.co.
IMPLEMENTACIÓN DE UN CULTIVO DE SANDÍA (*Citrullus lanatus* L.) COMO HERRAMIENTA DE EMPRENDIMIENTO SOCIAL, POLITICO Y PRODUCTIVO EN EL MUNICIPIO DEL VALLE DE GUAMUEZ PUTUMAYO

INFORME FINAL DE GRADO

MIGUEL DARÍO SOSA RICO

Director Trabajo de Grado

ANDERSON ARLEY DELGADO TORO

UNIVERSIDAD DE LA SALLE

FACULTAD DE CIENCIAS AGROPECUARIAS

INGENIERÍA AGRONÓMICA

El Yopal, mayo de 2017
TABLA DE CONTENIDO

Contenido

1. **INTRODUCCIÓN** ... 4
2. **OBJETIVOS** ... 4
 2.1 Objetivo general .. 5
 2.2 Objetivos específicos .. 5
3. **PLANTEAMIENTO DEL PROBLEMA** ... 5
4. **JUSTIFICACIÓN** ... 7
5. **LOCALIZACIÓN Y CARACTERIZACIÓN DE LA ZONA DEL PROYECTO** 7
 5.1 Caracterización de la zona del proyecto .. 8
 5.2 Caracterización socioeconómica ... 10
 5.3 Caracterización social .. 11
6. **COMPONENTE DE INGENIERÍA AGRONÓMICA** .. 12
 6.1 Material vegetal .. 12
 6.2 Requerimientos edafoclimáticos .. 12
 6.3 Preparación del terreno, vivero y siembra .. 14
 6.4 Plan de manejo de recursos hídricos .. 16
 6.5 Plan de manejo de la fertilización ... 18
 6.6 Plan de manejo integrado de arvenses, plagas y enfermedades .. 23
 6.6.1 Arvenses .. 23
 6.6.2 Manejo de Plagas .. 24
 6.6.3 Manejo de enfermedades .. 26
 6.7 Cosecha y postcosecha ... 28
7. **COMPONENTE DE INVESTIGACIÓN** .. 29
 7.1 Revisión de literatura ... 31
 7.2 Metodología ... 31
 7.3 Objetivos .. 32
 7.3.1 Objetivo general ... 32
 7.3.2 Objetivos específicos .. 32
 7.4 Resultados ... 33
 7.3 Análisis y discusión de resultados ... 35
8. **COMPONENTE DE LIDERAZGO SOCIAL, POLITICO Y PRODUCTIVO** 37
8.1 Descripción de impactos ... 37

9. COMPONENTE DE EMPRESARIZACIÓN DEL CAMPO ... 39
 9.1 Importancia económica del cultivo ... 39
 9.2 Comercialización .. 42
 9.3 Análisis financiero y flujo de caja .. 43
 9.4 Identificación de nuevos proyectos de emprendimiento .. 43
 9.5 Identificación de aliados para nuevos emprendimientos .. 44
 9.6 Evaluación de la continuidad del proyecto productivo .. 46

10 CONCLUSIÓNES .. 46

11 BIBLIOGRAFÍA .. 48

12 ANEXOS ... 52
 12.1 Anexo 1. Plan de fertilización .. 52
 12.2 Anexo 2. Análisis de suelo ... 63
1. INTRODUCCIÓN

En zonas de conflicto, las estrategias de política pública, ven de manera desenfocada la economía agrícola de la región, donde el gobierno llega, entrega, pero no culmina con su propósito final, el cual se caracteriza principalmente por generar nuevas estrategias e ideas de negocio para el sector agrícola. Estas estrategias en la gran mayoría nunca culminan como es el caso de proyectos de cultivos perennes. Donde las ayudas son entregadas, pero no hay un acompañamiento de todo el proceso y es ahí donde el abandono del campo se ve reflejado, ya que los beneficiarios de estas estrategias no se encuentran en las condiciones para manejar técnicamente de dichos cultivos. De acuerdo a la FAO 2012, nuestro país es o puede llegar a ser una de las más grandes despensas de alimentos del mundo, por lo tanto, se deben hacer esfuerzos en el fortalecimiento del sector agropecuario para mejorar las condiciones de vida de aquellos que en el día a día trabajan para ofrecer estos alimentos en las plazas de mercado que hay en todo el territorio nacional. Una de las vías de dicho fortalecimiento es la búsqueda de alternativas que permitan mejorar los procesos productivos del sector y que debe estar articulada con la educación y posterior retroalimentación de dicha información. Como aporte a llenar esta brecha política, económica y social, se decide implementar un cultivo de sandía (*Citrullus lanatus* L.), que genere un impacto social positivo que sirva como referencia en la ejecución de las actividades agrícolas de la vereda San Antonio del Guamuez donde aún tienen influencia los cultivos ilícitos y que además se busquen mecanismos de integración social, política y productiva entre sus habitantes.

2. OBJETIVOS
2.1 Objetivo general

Establecer mediante un plan de manejo técnico el seguimiento agronómico para el desarrollo del cultivo de sandía (*C. lanatus* L.), en el municipio Valle del Guamuez vereda San Antonio para ser comercializado en fresco, que sirva como referencia en la ejecución de las actividades agrícolas mediante su implementación.

2.2 Objetivos específicos

- Encontrar falencias en cultivo de sandía (*C. lanatus* L.), que permitan mejorar los procedimientos productivos en futuras plantaciones.
- Buscar mercados para la comercialización de sandía (*C. lanatus* L.), que será producida en el municipio Valle del Guamuez.
- Dar a conocer el producto y aumentar la comercialización en el municipio Valle del Guamuez.
- Identificar la entomofauna asociada al cultivo de sandía (*C. lanatus* L.), en el municipio Valle del Guamuez Putumayo.

3. PLANTEAMIENTO DEL PROBLEMA
Durante más de cincuenta años el campo colombiano ha sido el principal escenario del conflicto, de la pobreza, de la inequidad y el abandono estatal. En Colombia el 94% del territorio corresponde al sector rural, en este vive cerca del 32% de la población colombiana, con la cual existe una deuda social monumental. Uno de los mayores problemas del sector rural, es la tenencia de la tierra, según el Centro de Estudios sobre Desarrollo Económico (CEDE, 2017), el 77% de la tierra está en manos del 13% de propietarios, pero el 3,6% de estos son dueños del 30% de la tierra, estas cifras muestran un escenario de distribución de tierras que no favorece a los pequeños productores, que a pesar de la falta de acceso a la tierra, son quienes aportan el 70% de los alimentos que se producen en el país, y si a estas cifras le agregamos que el 44,7% del área del país está protegida y el 11% son parques naturales. Se puede concluir que en Colombia además de la pésima distribución de las tierras, tenemos otra problemática; el uso de las mismas.

El desarrollo de este proyecto tendrá estrategias para contribuir a resolver el problema del uso de las tierras, buscando que el campo colombiano sea más productivo sin necesidad de aumentar el área.

Otra de las problemáticas con la cual el proyecto desea contribuir es el combate a la pobreza en el campo. Según cifras de la FAO (2014), en las ciudades los pobres son el 30% y los indigentes son el 7%; en el sector rural la pobreza alcanza el 65% y la indigencia el 33%, además, en el sector rural el 85% de la población carece de alcantarillado, el 60% no tienen agua potable, el 18,5% son analfabetas y 55% de los campesinos en Colombia nunca han recibido asistencia técnica.
Históricamente el departamento del Putumayo fue golpeado por los cultivos ilícitos, y si agregamos que muchos ciudadanos rurales se acostumbraron a esta forma de ganarse la vida, esto los sobrellevó a tener un conocimiento amplio de este cultivo, a tal punto de adoptarlo en la cultura de la región, y si bien es cierto el gobierno Colombiano ha logrado reducir aproximadamente en un 90% los cultivos ilícitos en este departamento según consolidación territorial 2014, esto ha conllevando a que los agricultores no tengan la capacidad de salir adelante con otros cultivos y obligándolos a migrar hacia las ciudades cercanas aumentando el desempleo en la zona o dedicarse a la actividad pecuaria sin tener conocimiento de esta. Este proyecto busca solucionar esta problemática no solo generando empleo, generando riqueza de conocimiento a los agricultores de la región para que estos vuelvan al campo nuevamente productivo, pero esta vez de forma licita.

4. JUSTIFICACIÓN

Con el desarrollo de este proyecto se busca establecer un sistema productivo, que evidencie una respuesta a las problemáticas fitosanitarias y de nutricionales del cultivo, convirtiéndose en un cultivo demostrativo y fuente de conocimientos para los agricultores del sector, además en la medida que se pueda, acercar a los agricultores. Se plantea entonces, un sentir grupal que conlleve al desarrollo de una asociación, que también permita reducir costos de producción, generar mayores ingresos y obtener conocimiento del manejo del cultivo.

5. LOCALIZACIÓN Y CARACTERIZACIÓN DE LA ZONA DEL PROYECTO
El proyecto se llevó a cabo en el municipio de Valle del Guamuez, ubicado en el sur del Putumayo a cuatro horas de la capital del departamento (Mocoa) y a doce horas de la capital del país (Bogotá). En la actualidad las carreteras que comunican el municipio con Mocoa están pavimentadas en un 85%, lo que es una gran ventaja para comercializar nuestro producto pues reduce el tiempo de transporte en comparación al utilizado en años pasados; cabe aclarar que el tránsito y la comercialización de alimento entre el municipio y la ciudad de Mocoa es muy importante para el desarrollo de nuestra región, esta actividad se viene llevando a cabo desde años anteriores, por lo cual se tienen canales de comercialización abiertos que se podrían aprovechar. Por otro lado, la ubicación de las tierras del municipio le dan las características para sembrar diversidad de cultivos. Por último, debido a la localización y al buen desarrollo en infraestructura vial en el municipio se encuentran en su mayoría todas las herramientas e insumos deseados para la implementación de cualquier cultivo adaptado a las condiciones de la región.

5.1 Caracterización de la zona del proyecto

El proyecto se estableció en el departamento del Putumayo, municipio Valle del Guamuez, en la vereda San Antonio, a 150 km de Mocoa la capital del Putumayo, a una altitud aproximada de 300 m.s.n.m, una temperatura promedio de 28°C y precipitaciones promedio anuales de 4.000 mm, Según el DANE (2013), en el municipio Valle del Guamuez, cuenta con una población aproximada de 49.934 habitantes, de los cuales 19.863 personas viven en el sector urbano y 30.071 personas viven en el sector rural, con una densidad poblacional de 59,37 habitantes/km².
El municipio cuenta con buenas vías de comunicación, dentro de las cuales cabe destacar la vía La Hormiga –Mocoa, dicha vía se encuentra en un 85% pavimentada y en la actualidad se adelantan obras en el municipio para terminar con la totalidad de la pavimentación. El municipio está ubicado a 148 kilómetros de la capital del departamento (Mocoa), el recorrido tarda en la actualidad cerca de 3 horas y 28 minutos respectivamente.

Figura 1. Vía desde la capital del Putumayo hasta el municipio Valle del Guamuez (globo rojo) donde se ejecutará el proyecto.
La principal fuente hídrica de la región es el Rio Guamuez que pasa por la vereda donde se encuentra localizado el lote. Los suelos típicos de esta región son aluviales producto de la acumulación de sedimentos realizada por el río. Son suelos con texturas franco arenosa y bien drenados.

5.2 Caracterización socioeconómica

En el municipio Valle del Guamuez aproximadamente 40 años atrás se caracterizó por ser productor de soja (*Glycine max* L), plátano (*Musa paradisiaca* L), maíz (*Zea mays*), fríjol
Phaseolus vulgaris L, yuca (*Manihot esculenta* C) y caucho (*Hevea brasiliensis* W), que crecía naturalmente en la selva de dicha zona entre otros productos. Pero debido al abandono estatal y diferentes necesidades que se vivía el dicho tiempo, estos cultivos empezaron a verse opacados por la aparición de los cultivos ilícitos, como la planta coca (*Erythroxylum coca* J) que hasta la actualidad aún se conservan, convirtiéndose en un municipio que aún depende de algunos productos necesarios en la alimentación de los departamentos vecinos, como Caquetá, Nariño y Huila. Actualmente en el municipio se están cultivando cacao (*Theobroma cacao* L), café (*Coffea* A), maíz (*Zea mays*), pimienta (*Piper nigrum*), plátano (*M. paradisiaca* L), ají (*Capsicum Frutescens* L.), fríjol (*P. vulgaris* L), maní (*Arachis hypogaea* L) y yuca (*M. esculenta* C).

5.3 Caracterización social

En el municipio del Valle del Guamuez existen varias instituciones que incentivan el desarrollo del sector agropecuario. Entidades como el ICA y Corpoica pueden generar información y/o control con respecto a temas fitosanitarios y nutrición, entre otros. El ministerio de agricultura y desarrollo rural (MADR), la alcaldía municipal y la Gobernación pueden dar recursos económicos canalizados a través de la junta de acción comunal de la vereda San Antonio, Banco Agrario y Contactar, que ofrecen apoyo financiero, insumos y semillas. Además de facilitar crédito y ofrecer asistencia técnica. El Servicio Nacional de Aprendizaje (SENA), el Colegio Agropecuario y la Universidad de La Salle capacitan a muchos jóvenes en el sector rural para lograr mejorarla día a día.
6. COMPONENTE DE INGENIERÍA AGRONÓMICA

6.1 Material vegetal

La sandía (C. lanatus L.) pertenece a la familia Curcurbitaceae, es una planta trepadora, vigorosa y de ciclo corto, de tallos verdes y pubescente en el ápice; con zarcillos axilares enrollados en la parte superior y más largos que las hojas en las yemas apicales. Las hojas son de un verde intenso, lobuladas y pubescentes, su peciolo posee dos nectarios cortos cerca de la inserción de la lámina. Las Flores poseen sépalos verdes y pétalos amarillos; los hilamentos de la corona son amarillos; además, es una planta monoica. El androceo posee cinco estambres, cada uno con una antera cargada de polen amarillo y de pequeño tamaño. El fruto de la sandía se considera una fruta grande y de forma ovalada, con placenta carnosa y jugosa, alcanzando hasta 20kg de peso. Aun inmaduros poseen exocarpo verde dependiendo de la variedad, en la madurez se torna verde opaco. Sus semillas presentan coloración marrón oscuro y claro (Reche, 1994).

El material vegetal utilizado para la implementación del cultivo fue la variedad Charleston gray, la cual se caracteriza por presentar mayor tolerancia a enfermedades.

6.2 Requerimientos edafoclimáticos

Las condiciones edafoclimáticas son de vital importancia en la producción de cualquier cultivo, puesto que ejercen efectos directos en el crecimiento y desarrollo de las plantas y sobre el sistema productivo. Por ejemplo, el exceso de lluvias puede generar incremento en la incidencia
de enfermedades fungosas y bacterianas. Además, la polinización puede verse afectada si hay precipitaciones en horas de la mañana, debido al lavado del polen de las anteras y los insectos polinizadores no salen a realizar su trabajo.

La sandía (*C. lanatus* L.), es una especie de clima cálido y seco. No prospera adecuadamente en climas húmedos y con baja insolación, produciéndose falla en la maduración y calidad de los frutos. La humedad relativa óptima para el desarrollo de la planta está entre 65% - 75%, para la floración entre 60% - 70% y para la fructificación entre 55% - 65%. El desarrollo de los tejidos del ovario de la flor es influenciado por la temperatura y las horas de luz. Días largos y altas temperaturas favorecen la formación de flores masculinas y días cortos y temperaturas moderadas favorecen la formación de flores femeninas. El desarrollo óptimo lo alcanza en temperaturas mayores a 25 °C, con un óptimo de 35 °C y máximo de 40,6 °C. El cultivo requiere alrededor de 8 - 10 horas luz/día. Es necesario que los suelos posean buen drenaje. Los suelos franco-arenosos a francos son los mejores para el desarrollo del cultivo, no obstante, se pueden utilizar suelos franco arcillosos a arcillosos, en estos últimos, se debe evitar cultivar sandía en la misma área todos los años. Requiriéndose de rotaciones cada 3 años utilizando gramíneas (maíz (*Zea mays*), sorgo o pastos). La temperatura del suelo para la germinación es de 25-35 °C. La sandía (*C. lanatus* L.), tiene un óptimo desarrollo en pH desde 5,0 a 6,8 (tolera suelos ácidos y al mismo tiempo se adapta a suelos ligeramente alcalinos. Suelos de textura franca con alto contenido de materia orgánica son los más apropiados para el desarrollo de este cultivo. Entretanto, el cultivo es moderadamente tolerante a la presencia de sales tanto en el suelo como en el agua de riego.
La tabla 1 presenta las condiciones edafoclimáticas requeridas por el cultivo y las presentes en la zona de estudio.

<table>
<thead>
<tr>
<th>Requerimiento</th>
<th>V/ del Guamuez</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.s.n.m</td>
<td>0 - 1000</td>
</tr>
<tr>
<td>Temperatura (°C)</td>
<td>25 - 40</td>
</tr>
<tr>
<td>Humedad Relativa (%)</td>
<td>60 - 80</td>
</tr>
<tr>
<td>Suelos (Textura)</td>
<td>Franco arenoso</td>
</tr>
<tr>
<td>pH</td>
<td>5 - 6.8</td>
</tr>
<tr>
<td>Fotoperíodo (Horas</td>
<td></td>
</tr>
<tr>
<td>Brillo)</td>
<td>8 - 10</td>
</tr>
<tr>
<td></td>
<td>7 - 10</td>
</tr>
</tbody>
</table>

Tabla 1. Se muestran los requerimientos edafoclimáticos para el cultivo de sandía (Columna “Requerimientos”) y condiciones ofertadas por el municipio Valle del Guamuez.

6.3 Preparación del terreno, vivero y siembra

Para el área trabajada (10.000m²) se utilizaron palas, palínes, azadón, machetes, guadaña y motosierra, pues el cultivo se implementó en un terreno conocido como vega de rio, el cual ya ha sido invadido por abundante vegetación. Se realizaron trabajo de drenaje, a pesar de ser plano, presenta suelos franco-arenosos que facilitan su drenaje por su mayor porcentaje de arena (capa
desde 40 a 50 cm, alcanzando hasta 1,5m de profundidad. Con la presencia de tales condiciones se optó por realizar labores de labranza cero. Durante esta actividad se lograron identificar varias arvenses, siendo la predominante la conocida como caminadora (*Rottboellia cochinchinensis* L.), cortadera (*Ciporus ferax* L.) y pasto estrella (*Rhynchospora nervosa* L).

<table>
<thead>
<tr>
<th>Tiempo en Días</th>
<th>Actividad</th>
<th>Producto aplicado</th>
<th>Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 días</td>
<td>Desinfección de sustrato</td>
<td>Mancozeb + metalaxi</td>
<td>2 g / L</td>
</tr>
<tr>
<td>3 Días después de la germinación (DDG)</td>
<td>Inoculación</td>
<td>bacteria (Pseudomonasfluorescens) 1x10^8 UFC/ml</td>
<td>1 ml / L</td>
</tr>
<tr>
<td>8 DDG</td>
<td>Fertilización Foliar</td>
<td>Elementos menores + Acido indolbutirico + Aminoácidos</td>
<td>5 g / L</td>
</tr>
<tr>
<td>15 DDG</td>
<td>Fertilización Foliar rica en fosforo</td>
<td>RéBrote® (10-50-10)</td>
<td>5 g / L</td>
</tr>
</tbody>
</table>

Tabla 2. Manejo agronómico en etapa de vivero.

Fuente. Elaboración propia

Para la obtención de plantas aptas se realizó la compra de 500 g de semilla de sandía a la empresa Semillas Arroyave (registro de venta ICA. No 3168) y se procedió al montaje de un vivero donde se lograron obtener 1000 plantas para cada ciclo productivo. Las semillas se plantaron en bandejas de germinación, utilizándose como sustrato bokashi y suelo en relación 1:1. El sustrato
fue desinfectado con Ridomil Gold® (i.a. Metalaxil + Mancozeb), en dosis de 2 gr/l e hipoclorito de sodio (concentración del 5%), en dosis de 30 ml/l de agua.

La germinación duró aproximadamente ocho días, y la etapa de vivero duró 20 días. Para el trasplante se seleccionaron las plantas más vigorosas, sanas y exentas de cualquier daño físico o fisiológico. Estas plantas fueron llevadas a campo cuando tenían 3 pares de hojas verdaderas y óptimo desarrollo radicular. En la figura 3 se observa las plántulas en vivero y campo.

Figura 3: Plántulas de sandía en etapa de vivero (izquierda) y listas para establecimiento en campo (Derecha).

Fuente: Autor

6.4 Plan de manejo de recursos hídricos

El cultivo de sandía (C. lanatus L.), demanda en promedio 6 l/m² de agua en la zona de la Ciénaga Grande de Lorica, Córdoba, en suelos franco-arenosos (Banda, Corredor, y Corredor,
2004). Cabe resaltar que para el municipio Valle del Guamuez, estos requerimientos se consideran más elevados como consecuencia de temperaturas más altas que la zona estudiada por esos autores. Sin embargo, esta información ofreció un punto de referencia para satisfacer las necesidades hídricas del cultivo, siendo favorecido por las condiciones climáticas presentados durante el ciclo.

El cultivo fue establecido en los meses de agosto y febrero, presentando días soleados con temperaturas promedio de 27.5°C y noches lluviosas con precipitaciones de 7 ml/m², lo que permitió una respuesta rápida de adaptación en campo, debido a que tuvo agua suficiente para la disolución de los nutrientes y su posterior absorción. En este proyecto no se implementó un sistema de riego como tal, ya que en la región las precipitaciones están bien distribuidas y fueron suficientes para cubrir las necesidades hídricas del cultivo.

6.5 Plan de manejo de la fertilización

Para la elaboración del plan de fertilización es importante considerar las características químicas del suelo. Por un lado, los ingenieros Banda et al. (2004), consideran que el pH óptimo para el buen crecimiento y desarrollo de cultivos de sandía (*C. lanatus* L.), se encuentra entre 5 y 6. Según los resultados del análisis de suelos realizado en la Universidad de La Salle (sede El Yopal), el terreno donde se estableció el cultivo presenta un pH de 5,4; por lo que, teniendo en cuenta lo considerado por Banda et al. (2004), no es necesario realizar actividades de encalamiento. La tabla 3 presenta los requerimientos nutricionales de la sandía durante todo su ciclo vegetativo.

<table>
<thead>
<tr>
<th>Requerimientos nutricionales de la sandía (RNE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos</td>
</tr>
<tr>
<td>Nitrógeno (N)</td>
</tr>
<tr>
<td>Fosforo (P)</td>
</tr>
<tr>
<td>Potasio (K)</td>
</tr>
<tr>
<td>Magnesio (Mg)</td>
</tr>
<tr>
<td>Calcio (Ca)</td>
</tr>
</tbody>
</table>

Tabla 3. Extracción de nutrientes del cultivo de sandía durante su ciclo vegetativo.

La tabla 4 presenta la disponibilidad de elementos mayores obtenidos en el análisis de suelo.

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>DNS</th>
<th>RNE</th>
<th>NF</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno (Kg*ha⁻¹)</td>
<td>85,18</td>
<td>150</td>
<td>108,13</td>
<td>Bajo</td>
</tr>
<tr>
<td>Fósforo (Kg*ha⁻¹)</td>
<td>29,13</td>
<td>90</td>
<td>60,87</td>
<td>Bajo</td>
</tr>
<tr>
<td>Potasio (Kg*ha⁻¹)</td>
<td>62,24</td>
<td>145</td>
<td>118,23</td>
<td>Bajo</td>
</tr>
<tr>
<td>Calcio (Kg*ha⁻¹)</td>
<td>885,78</td>
<td>108</td>
<td>-972,2</td>
<td>Alto</td>
</tr>
<tr>
<td>Magnesio (Kg*ha⁻¹)</td>
<td>106,90</td>
<td>30</td>
<td>-96,13</td>
<td>Alto</td>
</tr>
</tbody>
</table>

Tabla 4. Análisis de suelo, presentando la disponibilidad de nutrientes del suelo (DNS), los requerimientos nutricionales de la especie (RNE) y la necesidad de fertilizante del cultivo de sandía (NF):

Fuente: elaboración propia.

Para el cálculo de la necesidad de fertilización (NF) se utilizaron los porcentajes de eficiencia que cada uno de estos minerales presenta según las condiciones agroclimáticas.

Utilizando las recomendaciones realizadas por la FAO (2002) y Navarro y Navarro (2003), la eficiencia implementada, expresada en porcentajes, para los cálculos fue de 50, 30, 60, 80 y 80, de Nitrógeno, Fósforo, Potasio, Calcio, Magnesio respectivamente.
Cabe resaltar que los resultados obtenidos en el cálculo matemático de la columna (NF) no corresponden al cálculo previo para determinar la fuente de fertilización, sino que fueron una guía para ello junto con las relaciones iónicas presentes en el suelo.

<table>
<thead>
<tr>
<th>Ca/Mg</th>
<th>Ca/K</th>
<th>Mg/K</th>
<th>Ca+Mg/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def. Mg</td>
<td>Def. K</td>
<td>Def. K</td>
<td>Def. K</td>
</tr>
</tbody>
</table>

Tabla 5. Relaciones iónicas entre los minerales presentes en el lote del cultivo (Def: Deficiencia).

Fuente. Elaboración propia

De acuerdo con la tabla anterior se puede observar que los iones de Mg pueden originar deficiencias de Ca y K en el cultivo; así mismo, el Ca también puede causar este efecto negativo en el potasio. Teniendo en cuenta todos los argumentos anteriormente mencionados, la NF utilizada para el cálculo de los productos comerciales es de 108 kg*ha⁻¹ de Nitrógeno, 121,74 kg*ha⁻¹ de Fosforo, 118 kg*ha⁻¹ de Potasio. Posteriormente se eligieron las fuentes comerciales de elementos mayores a utilizar para la fertilización. Como fuentes nitrogenadas se utilizaron Nitra Boro que es complementado con B, como fuente potásica se implementó cloruro de potasio (KCL), y como fuente de fosforo se eligió, fosfato diamonico (DAP).

La tabla 6 presenta el fraccionamiento de las fertilizaciones durante los ciclos productivos.
Tabla 6. Dosificación de la fertilización para los cuatro ciclos productivos. F: Fertilización. Días Después de la Siembra, (DDS). Todos los datos numéricos dentro de la tabla poseen la unidad gramos (g) por planta.

Fuente. Elaboración propia.

La primera fertilización se aplicó a los 8 días después del trasplante. Estas actividades se realizaron quincenalmente, siendo aplicada en forma de corona.

Figura 5. Fertilización en plántulas de sandía. primer día de trasplante (izquierda), 15 días después del trasplante y primera fertilización (derecha).

Fuente: Autor
Para mayor eficiencia en la fertilización se desarrolló un plan de monitoreo como herramienta de apoyo para determinar posibles deficiencias o atrasos en el crecimiento de las plantas. La Figura 5 presenta el cronograma de monitoreos. Estos fueron realizados una vez por semana.

Seguimiento Semanal de Posibles Deficiencias Nutricionales en el Cultivo de Sandía (C. lanatus L.),
Ciclo 1
Ciclo 2
Ciclo 3
Ciclo 4

Tabla 7. Cronograma de monitoreos para detectar posibles deficiencias nutricionales y presencia de plagas durante los ciclos productivos de sandía.

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Fuente Comercial de Fertilizante</th>
<th>Total g - ml</th>
<th>F 1</th>
<th>F 2</th>
<th>F 3</th>
<th>F 4</th>
<th>F 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creci Plant®</td>
<td>8.000 g</td>
<td>100 g</td>
<td>100 g</td>
<td>100 g</td>
<td>100 g</td>
<td>100 g</td>
</tr>
<tr>
<td>GoUp Micro®</td>
<td>10.000 ml</td>
<td>50 ml</td>
<td>100 ml</td>
<td>150 ml</td>
<td>100 ml</td>
<td>100 ml</td>
</tr>
<tr>
<td>Rendimiento®</td>
<td>6.000 ml</td>
<td>0</td>
<td>0</td>
<td>150 ml</td>
<td>100 ml</td>
<td>100 ml</td>
</tr>
<tr>
<td>Microkel Calcio Boro®</td>
<td>6.000 ml</td>
<td>0</td>
<td>0</td>
<td>150 ml</td>
<td>100 ml</td>
<td>100 ml</td>
</tr>
<tr>
<td>RéBrote®</td>
<td>8.000 g</td>
<td>100 g</td>
<td>100 g</td>
<td>100 g</td>
<td>100 g</td>
<td>100 g</td>
</tr>
</tbody>
</table>

Tabla 8. Fraccionamiento y fuentes comerciales de los productos aplicados en el cultivo.

Fuente: Elaboración propia.
Según (Zaniewicz, Franczuk y Kosterna, 2009), la aplicación foliar con fertilizantes multi componentes en las cucurbitáceas tienen influencia significativa en el nivel de rendimiento y calidad de la fruta, ya que aumentan el peso y el número de frutos comercializables. Como complemento a la fertilización edáfica, se realizaron cinco aplicaciones de fertilización foliar por ciclo productivo, empleando el producto Go Up micro®, el cual es fuente alta de aminoácidos libres, los cuales son ideales para combatir el estrés causados por las condiciones climática, el trasplante o aplicaciones de insecticidas. Otro producto aplicado fue Creciplant®, este es fuente de N, P, K y elementos secundarios y menores. También se aplicó Rendimiento®, el cual permite aumentar los contenidos de sacarosa y concentrarlos en un momento específico para incrementar los rendimientos en la cosecha. Microkel Calcio Boro®, fuente de Ca, B, Zn y por último extracto de algas marinas (Ascophyllum nodosum), el cual favorece el balance hormonal, transporte de azúcares y retención de flores y frutos. RéBrote®, producto a base de Ácido indolbutirico, Fito hormona Ácido naftalenacético (ANA) y citoquininas. Para la aplicación de estos productos se tuvo en cuenta la recomendación de la etiqueta comercial y a calibración realizada en campo.

6.6 Plan de manejo integrado de arvenses, plagas y enfermedades

6.6.1 Arvenses
Las arvenses que predomina en el lote fueron: caminadora (*R. cochinchinensis* L), cortadera (*C. ferax* L.) y pasto estrella (*R. nervosa* L.). El control de arvenses se realizó de forma mecánica y química dependiendo del estado de las mismas. Cuando estas sobrepasaban los 30 cm de altura e iniciaban a florecer, se realizaron aplicaciones de glifosato en dosis de 3,5 ml /l, usando máquina de espalda con boquilla de cono. La aplicación de este producto se hace bajo la recomendación de la etiqueta comercial y a calibración realizada en campo, las cuales se ejecutaron antes del establecimiento del cultivo. Posteriormente a esta aplicación se realizó un control manual evitando la aplicación de más herbicidas.

6.6.2 Manejo de Plagas
Un entendimiento profundo de la biología y ecología de los organismos presentes en el agro ecosistema resulta en la habilidad de manipularlos y dirigirlos. En el control tradicional simplemente se reacciona, suprimiendo la plaga cuando alcanza altas poblaciones. La comprensión de las estrategias de supervivencia de los organismos que amenazan nuestro bienestar involucra el conocimiento de la plaga y sus interacciones con el ambiente haciendo más fácil diseñar y aplicar los procedimientos de manejo (Jiménez, 2009).

De acuerdo a los monitoreos realizados en el cultivo (Tabla 6), siendo ejecutados 2 veces por semana. Fueron 25 plantas al azar por cada monitoreo y de acuerdo a la presencia de plagas de importancia económicas para el cultivo tales como áfidos (*Aphis gossypii* G.), trozadores (*Acheta assimilis* F.) y trips (*Frankliniella occidentalis* P.), se procedía a realizar el respectivo manejo.

La sintomatología evidenciada en el cultivo estaba asociada a raspaduras en las hojas, plantas con gran porcentaje de hojas con rugosidades y entorchadas, correspondiente al ataque de trips (*F. occidentalis* P.) y áfidos (*A. gossypi G*), cabe resaltar que estas plagas solo se presentaron en un borde del lote.

Se realizaron aplicaciones de insecticida, ThiaLa (i.a Tiametoxam + Lambdacialotrina), estas se realizaron cada 10 días, dependiendo del porcentaje de infestación en el cultivo, la dosis que se empleó en la aplicación de estos productos fue 0,75 ml/l de agua.
Además, se realizaban aplicaciones preventivas cada diez días del insecticida botánico Hidrolato de tabaco agrisan, obtenido a partir de las hojas y tallos del tabaco negro (*Nicotiana tabacum* L.). Este producto actúa por contacto, debido a la habilidad para penetrar el integumento del insecto. La nicotina imita a la acetilcolina en la función neuromuscular del insecto provocando contracciones, convulsiones y finalmente la muerte; tiene efecto anti alimentario y ovicida. Es eficiente en el control de áfidos (*A. gossypii G*), minador de hoja (*Liriomyza spp*), mosca blanca (*Bemisia tabaci G*)), trips (*F. occidentalis P*), y gusano cortador en sus primeros estados larvarios (*Agrotis ipsilon R*), (Agrisan, 2012). La dosis utilizada fue de 100ml/20l de agua.

<table>
<thead>
<tr>
<th>Plaga</th>
<th>Nombre científico</th>
<th>Monitoreo</th>
<th>Control</th>
<th>Dosis</th>
<th>Método de aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afidios</td>
<td>A. gossypii G</td>
<td>Sistemático</td>
<td>Tiametoxam + Lambdacialotrina y coadyuvante 1ml/L</td>
<td>0,75 ml/L</td>
<td>Aspersión localizado</td>
</tr>
<tr>
<td>Trips</td>
<td>F. occidentalis p</td>
<td>Sistemático</td>
<td>Rotación de hidrolato de tabaco y Dimethoato + coadyuvante 1ml/L</td>
<td>5 ml/L y 0,75/L</td>
<td>Aspersión</td>
</tr>
<tr>
<td>Trozador</td>
<td>A. assimilis</td>
<td>Al azar y directo</td>
<td>Rotación de hidrolato de tabaco y Dimethoato + coadyuvante 1ml/L</td>
<td>5 ml/L y 0,75/L</td>
<td>Aspersión</td>
</tr>
<tr>
<td>Masticador</td>
<td>Epilachna paenulatae</td>
<td>Al azar y directo</td>
<td>Rotación de hidrolato de tabaco y Dimethoato + coadyuvante 1ml/L</td>
<td>5 ml/L y 0,75/L</td>
<td>Aspersión</td>
</tr>
</tbody>
</table>

Tabla 9. Manejo integrado de plagas.

Fuente. Elaboración Propia.

6.6.3 Manejo de enfermedades

Según la sintomatología evidenciada en campo las principales enfermedades que se presentaron durante el desarrollo del proyecto fueron Mildeo veloso (*Pseudoperonospora*
cubensis, B) y mancha foliar (Cercospora citrullina sp). Con el fin de curar y prevenir estas enfermedades se realizó la siguiente rotación de principios activos:

fosfito de potasio + sulfato de cobre, se aplicó en dosis de 5g/l. Luego de tres días se evaluó su acción. Al no ser eficaz, se realizó la aplicación de i.a Mancozeb + metalaxil, en dosis de 2g /l. Su acción fue más efectiva. Sin embargo, en los bordes del cultivo continuaba la enfermedad. En esta circunstancia se realizó la aplicación de i.a Azoxystrobin + Tebuconazol, en dosis de 0,5 ml/. Gracias a estas medidas y a la disminución de las precipitaciones se logró corregir este problema.

<table>
<thead>
<tr>
<th>Tipo de Enfermedad</th>
<th>Tipo de Daño</th>
<th>Monitoreo</th>
<th>Nivel de Daño</th>
<th>Control</th>
<th>Dosis x Litro de agua</th>
<th>Método</th>
<th>Finalidad de las aplicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mildiu velloso</td>
<td>Manchas de color amarillo claro en el centro del área foliar</td>
<td>Al azar y dirigido</td>
<td>5% de las hojas, prevenir y curar</td>
<td>Rotación de:</td>
<td>Fosfito de Potasio + Sulfato de cobre 5g / L</td>
<td>Aspersión</td>
<td>Al inicio de los primeros síntomas de la se debe actuar ya que esta enfermedad puede avanzar y llegar a afectar los frutos</td>
</tr>
<tr>
<td></td>
<td>Manchas de color amarillo y pequeñas manchas oscuras en los bordes del área foliar</td>
<td>Al azar y dirigido</td>
<td>10% de las hojas, prevenir y curar</td>
<td>Rotación de:</td>
<td>Fosfito de Potasio + Sulfato de cobre 5g / L</td>
<td>Aspersión</td>
<td>Al inicio de los primeros síntomas de la se debe actuar ya que esta enfermedad puede avanzar causando muerte parcial de la planta</td>
</tr>
</tbody>
</table>
Tabla 10. Manejo integrado de las enfermedades presentes en el cultivo y productos aplicados para su control.

Fuente: Elaboración propia.

6.7 Cosecha y postcosecha

La fecha de recolección de la sandía está subordinada a la variedad cultivada, zonas de cultivo, época de siembra, y del sistema de cultivo. Desde la siembra o plantación hasta que se inicia la recolección transcurren 3 meses, alargándose 7-10 días más. En la mayoría de cultivares la primera cosecha se realiza a los 85 días después de haber germinado las semillas (45 días después de la floración). Las características que determinan la madurez son: bráctea y zarcillo seco, los bellos del pedúnculo caen y éste se pone más delgado, el fruto se cubre de un polvo blanquecino, al golpearlo con los nudillos de los dedos los frutos verdes producen un sonido metálico, los frutos maduros tienen un sonido sordo y la mancha clara basal se torna amarilla. La cosecha se debe realizar temprano en la mañana, dejando una porción del pedúnculo al fruto de unos 5 centímetros para evitar la penetración de patógenos a la pulpa.

En la clasificación de los frutos para comercialización se consideró el peso ya que la tendencia actual es la de consumir sandías de menos de 5 kilogramos en algunas regiones del país. Los frutos deben ser uniformes y completamente libres de daños por insectos y enfermedades, sin lesiones físicas, adecuado porcentaje de azúcares y pulpa de un rojo intenso. Estos frutos se cosechan a mano, ya que poseen una cáscara tierna que se daña fácilmente durante la cosecha y el
acondicionado. Por tanto, todas las operaciones de manejo deben realizarse cuidadosamente para prevenir daños en la cáscara y pérdida de la calidad visual de la fruta, mayor deshidratación y podredumbres. Para reducir estos daños físicos fue fundamental minimizar la manipulación de los frutos durante su manejo. El manejo después de la cosecha, fue principalmente el lavado de los frutos, inician las actividades posteriores a la misa que consistieron en seleccionar las calidades extra y pareja que exige el mercado objetivo.

El producto se recolectaba el día anterior a la entrega o es llevado a la plaza de mercado del municipio donde fue comercializada en fresco.

Figura 7. Cosecha de frutos.

Fuente: Elaboración propia.

7. **COMPONENTE DE INVESTIGACIÓN**

Inventario de la entomofauna asociada al cultivo de sandía (*C. lanatus* L.), en el municipio Valle del Guamuez Putumayo.
En el departamento del Putumayo la producción de sandía es poca o casi nula. Los estudios realizados sobre este cultivo son muy pocos y el conocimiento de la entomofauna asociada a él es un punto de partida para realizar nuevas investigaciones. El desarrollo de esta investigación se llevó a cabo en cuatro lotes de sandía. Se realizaron muestreos empleando métodos activos, como captura manual directa, uso de red y métodos pasivos, como trampas con atrayentes y trampas de caída. Los insectos colectados se sometieron a cámara letal y luego se montaron en alfileres para su posterior identificación con ayuda del estereoscopio y claves taxonómicas. En los diferentes lotes se identificaron un total de 6 órdenes. Los órdenes Hymenoptera y Coleoptera reportaron la mayor cantidad de individuos benéficos. En el lote número uno se observó la mayor cantidad de insectos; también fue la única área en donde se evidenció la presencia de la plaga más limitante para este cultivo, (F. occidentalis P), perteneciente al orden Thysanoptera. La cantidad de familias presentes en los muestreos se ve influenciada más por el manejo agronómico implementado en cada lote que por las variables climatológicas, como temperatura, humedad relativa y precipitación.

Se realizaron doce muestreos en los cuales se obtuvo la presencia de especímenes de la familia Thripidae en la zona apical de la planta, la familia Noctuidae en las hojas, la familia Coreidae en los frutos, la familia Gryllidae en tallos y hojas, la familia Coccinellidae y de la familia Apidae en las flores de la planta.
7.1 Revisión de literatura

La mayoría de los cultivos de plantas ornamentales y hortalizas necesitan de los insectos para la polinización. Se puede decir que, sin el trabajo valioso realizado por los insectos en la polinización de las flores, tendríamos rendimientos muy bajos de productos utilizados por la humanidad y por qué no decirlo de muchos otros seres que viven en nuestro mundo. Otra relación de los insectos con la agricultura es aquella en que actúan como seres benéficos depredando o parasitando a otros insectos dañinos a las plantas. Por último, no podemos dejar de mencionar la acción de los insectos dañinos a las plantas, estos son capaces de causar grandes perjuicios en forma directa o indirecta (Patiño, Martínez y Alvarado, 2013).

7.2 Metodología

La investigación se realizó en la vereda San Antonio, situada en el municipio Valle del Guamuez, departamento del Putumayo. A los 0°28'41.5"N 76°53'43.4"W, 280 m.s.n.m con una temperatura que oscila entre los 24 y 40 °C, y precipitaciones anuales de casi 4.000 mm.

Fue una investigación cualitativa con cuatro repeticiones, en la recolección del material en campo se emplearon una red entomológica, trampas de caída, frascos de vidrio, alcohol y cámara letal, trampa de luz, entre otros. Se muestrearon las plantaciones de sandía (*C. lanatus*), en tres diferentes etapas fenológicas para colectar especímenes presentes en cada fase del cultivo. Para la captura pasiva, en cada lote se ubicaron 5 trampas de caída y 5 trampas amarillas para mosca
blanca, y 5 trampas de luz. Para la captura activa se emplearon métodos directos como jama y captura manual. Luego de capturados los individuos fueron llevados a cámara letal con alcohol, y posteriormente se montaron en cajas con láminas de icopor para organizar la colección; los cuales fueron observados e identificados con la ayuda de un estereoscopio. Se tomaron los datos requeridos para elaborar las etiquetas que acompañan a cada ejemplar.

Este tipo de metodología es mencionada por Southwood y Anderson (2000), que, por su parte, plantean métodos de monitoreo relativos, absolutos y por indicios de la población. La estimación relativa de la densidad es aquella que no tiene relación directa con una estructura de la planta o área afectada. Se refiere a monitoreo en trampas, capturas o conteo de individuos en un tiempo dado. En general este tipo de monitoreo es menos costoso y más fácil de usar que la mayoría de las estimaciones.

7.3 Objetivos

7.3.1 Objetivo general

- Inventario de la entomofauna asociada al cultivo de sandía (*C. lanatus L*), en el municipio Valle del Guamuez, Putumayo.
Identificar los principales insectos que interactúan en la producción de sandía (C. lanatus L), para una clasificación correcta tomando en cuenta orden, familia, género y especie.

Determinar el comportamiento de las plagas en el hospedero como sandía (C. lanatus L), para la determinación del daño que ocasionan.

Evidenciar el comportamiento de los insectos benéficos en el hospedero como sandía (C. lanatus L), para determinar cómo nos contribuyen.

7.4 Resultados

<table>
<thead>
<tr>
<th>Orden</th>
<th>Familia</th>
<th>Género</th>
<th>Especie</th>
<th>Observaciones</th>
<th>Etapa del Cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortóptera</td>
<td>Tettigonidae</td>
<td>Conocephalus</td>
<td>fasciatus</td>
<td>Benéfico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gryllidae</td>
<td>Acheta</td>
<td>assimilis</td>
<td>Plaga</td>
<td></td>
</tr>
<tr>
<td>Lepidóptera</td>
<td>Noctuidae</td>
<td>Agrotis</td>
<td>epsilon</td>
<td>Plaga</td>
<td>Vegetativa</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Coccinellidae</td>
<td>Epilachna</td>
<td>paenulata</td>
<td>Plaga</td>
<td></td>
</tr>
<tr>
<td>Hemiptera</td>
<td>Pentatomidae</td>
<td></td>
<td></td>
<td>plaga</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 11. Insectos colectados en el cultivo de sandía (etapa de crecimiento).

Fuente: Elaboración propia.
<table>
<thead>
<tr>
<th>Orden</th>
<th>Familia</th>
<th>Género</th>
<th>Especie</th>
<th>Observaciones</th>
<th>Etapa del Cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hymenóptera</td>
<td>Apidae</td>
<td>Apis</td>
<td>mellifera</td>
<td>Benéfico</td>
<td>Floración</td>
</tr>
<tr>
<td>Vespidae</td>
<td>Polistes</td>
<td>dominula</td>
<td></td>
<td>Benéfico</td>
<td></td>
</tr>
<tr>
<td>Evaniidae</td>
<td>Evania</td>
<td>appendigaste</td>
<td></td>
<td>Benéfico</td>
<td></td>
</tr>
<tr>
<td>Neuroptera</td>
<td>Chrysopidae</td>
<td>Chrysoperla</td>
<td>carnea</td>
<td>Benéfico</td>
<td></td>
</tr>
<tr>
<td>Thysanóptera</td>
<td>Thripidae</td>
<td>Frankliniella</td>
<td>occidentalis</td>
<td>Plaga</td>
<td></td>
</tr>
<tr>
<td>Lepidóptera</td>
<td>Noctuidae</td>
<td>Agrotis</td>
<td>ipsilon</td>
<td>Plaga</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 12. Insectos colectados en el cultivo de sandía (etapa de floración).

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Familia</th>
<th>Género</th>
<th>Especie</th>
<th>Observaciones</th>
<th>Etapa del Cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemíptera</td>
<td>Coreidae</td>
<td>Leptoglossus</td>
<td>clypealis</td>
<td>Plaga</td>
<td>Fructificación</td>
</tr>
<tr>
<td></td>
<td>Pentatomidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aphididae</td>
<td>Aphis</td>
<td>gossypii</td>
<td>Plaga</td>
<td></td>
</tr>
<tr>
<td>Thysanóptera</td>
<td>Thripidae</td>
<td>Frankliniella</td>
<td>occidentalis</td>
<td>Plaga</td>
<td></td>
</tr>
<tr>
<td>Hymenóptera</td>
<td>Apidae</td>
<td>Apis</td>
<td>mellifera</td>
<td>Benéfico</td>
<td></td>
</tr>
<tr>
<td>Vespidae</td>
<td>Polistes</td>
<td>dominula</td>
<td></td>
<td>Benéfico</td>
<td></td>
</tr>
<tr>
<td>Evaniidae</td>
<td>Evania</td>
<td>appendigaste</td>
<td></td>
<td>Benéfico</td>
<td></td>
</tr>
<tr>
<td>Neuroptera</td>
<td>Chrysopidae</td>
<td>Chrysoperla</td>
<td>carnea</td>
<td>Benéfico</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 13. Tabla 11. Insectos colectados en el cultivo de sandía (etapa de fructificación).

Fuente: Elaboración propia.
Figura 8. Ubicación de las trampas amarillas y distribución en cada lote cultivado con sandía.

Fuente. Autor.

7.3 Análisis y discusión de resultados

La poca diversidad de familias presentes en los lotes de sandía (*C. lanatus* L) podría estar directamente relacionada con el agro ecosistema que lo rodea, según Altieri (2014) y Landis *et al.*, (2000), estos atributos se conectan con los altos niveles de biodiversidad funcional asociada a agro ecosistemas complejos. De hecho, la mayor parte de la información científica, que documenta la regulación de plagas en sistemas diversificados, sugiere que esto sucede dada la gran variedad y abundancia de depredadores y parasitoides en estos sistemas. Se han sugerido varias hipótesis donde se postulan los mecanismos que explican la relación entre un mayor número de especies de plantas y la estabilización de agro ecosistemas y se incluye la regulación de plagas (Tilman *et al.*, 1996). También se le es atribuido al manejo agronómico que se le dio al cultivo; debido a que se realizaron aplicaciones preventivas tanto para plagas como enfermedades. En el desarrollo del
proyecto también se reportó la presencia de trips catalogada como una de las plagas más importantes, cabe resaltar que no hubo presencia de mosca blanca (*B. tabaci G.*) conocida por ocasionar grandes pérdidas económicas para los productores de sandía (*C. lanatus L*) en Colombia.

La presencia de polinizadores se ve favorecida por una menor aplicación de productos agroquímicos tanto para el control de insectos como para el control de malezas. En total se identificaron de 6 órdenes y 9 familias de insectos asociados al cultivo de sandía (*C. lanatus L*) en el Valle del Guamuez. Es necesario continuar con los estudios para entender los hábitos y ciclos de vida de las familias reportadas como plaga y que en este estudio se encontraron asociadas al cultivo.

Luego de realizar monitoreos frecuentes para evaluar los niveles de la población y si realmente se necesita controlarla con productos químicos, es recomendable utilizar insecticidas biológicos o de origen botánico que, además de ser accesibles y fáciles de preparar, tienen un menor impacto en la fauna benéfica. Para lograr esto es necesario propiciar condiciones favorables para la conservación, protección e incremento de los enemigos naturales (Cañedo *et al.*, 2013).

La identificación y clasificación de las especies encontradas se realizó a través de claves dicotómicas descritas en: Borror and Delongs Introduction to the Study of Insect, Insectos de Colombia Volumen 3, Principles of Insect Morfology, Fundamentos y Métodos para el Estudio de los Insectos, Potential Interaction of Pendimethalin and Systemic Insecticides for Thrips Control in Cotton. Así mismo fueron utilizados artículos publicados en revistas científicas como: Revista Colombiana de Entomología. Di Trani, J. menciona la Visita de abejas (*Apis mellifera*,

8. COMPONENTE DE LIDERAZGO SOCIAL, POLITICO Y PRODUCTIVO

8.1 Descripción de impactos

El apoyo a las comunidades va más allá de enseñar el manejo de determinado cultivo o de hacer recomendaciones con respecto a alguna situación presentada en los cultivos. Es necesario profundizar más a fondo para poder brindar un apoyo más integral. Por esta razón se inició trabajos con la Institución Educativa Ciudad La Hormiga (I.E.C.H), donde se abordan temas de superación personal, motivación a seguir sus estudios universitarios y en otros aspectos relacionados con la formación en ciencias naturales. Adicionalmente se han realizado actividades de integración y socialización en temas de convivencia y participación ciudadana.
Figura 9. Charla a estudiantes de la Institución Educativa Ciudad LA Hormiga (I.E.C.H)

Fuente. Autor.

Por otra parte, se realizó una capacitación en la vereda Las Delicias donde se tocaron temas como el adecuado uso de agroquímicos, rotación de principios activos y la importancia del control biológico en la agricultura.

Figura 10. Charla manejo de agroquímicos a habitantes de la vereda Las Delicias.

Fuente: Autor.
En la articulación del proyecto y la réplica del mismo se logró llegar a un agricultor en el municipio Valle del Guamuez el cual implementó 4 hectáreas de las cuales ya fueron cosechadas y comercializadas en municipios vecinos como Orito, Puerto Asís y San Miguel.

Figura 11. Réplica del proyecto del cultivo de sandía.

Fuente: Autor.

9. COMPONENTE DE EMPRESARIZACIÓN DEL CAMPO

9.1 Importancia económica del cultivo

La sandía (C. lanatus L) es una fruta con un alto contenido de agua, actúa como hidratante. Aporta sales minerales (entre las que caben destacar el magnesio y potasio), y dentro de su composición encontramos la presencia de lycopeno, una sustancia que, cuando se encuentra en abundancia en el torrente sanguíneo, juega un papel importante en la neutralización de los radicales
libres. Personas con problemas de retención de líquidos debido a ácido úrico elevado o cálculos renales (incluyendo además presión arterial alta), la sandía (*C. lanatus* L) es capaz de estimular la diuresis y ayuda a la depuración del organismo, favoreciendo la eliminación de sustancias tóxicas a través de la orina (Carbajal, 2015).

También podemos agregar que en el lugar que se implementó el cultivo se encuentra en la vereda San Antonio de Guamuez, cuyos ingresos económicos derivan de la agricultura. Al ejecutar este proyecto en un área de 10,000 m2 escalonada para una producción durante un año, los habitantes contratados de esta vereda durante este tiempo recibieron un total de $1.635.000 por pago de jornales, dinero con el cual ellos no contaban. Es ahí donde este tipo de proyectos empiezan a tomar importancia económica para la región, dado el caso que se dé continuación a este tipo de cultivos donde se pueden implementar en mayor área con menores intervalos de tiempo. La producción y el área cosechada de sandía (*C. lanatus* L) que está destinada al consumo interno del país, es decir, la cantidad (oferta) de sandía (*C. lanatus* L) que se ha venido destinando para satisfacer nuestras necesidades.
Colombia en el año 2013 contaba con un poco más de 9.150 ha en todo el territorio nacional, alcanzando una producción cercana a las 156.212 t, lo que se traduce en rendimiento promedio de 17,3 t/ha. Sin embargo, en el departamento del Meta se presentan rendimientos de hasta 39 t/ha. La figura 11 presenta la producción por departamento en Colombia.

Figura 13. Rendimiento por hectárea en los diferentes departamentos productores de sandía en Colombia para el año 2013.

En el presente proyecto se lograron obtener 13,65 t/ha, superando la producción de los departamentos de Vichada, Nariño entre otros.

9.2 Comercialización

Por otro lado, las características de la fruta no permiten realizar algún tipo de aporte de transformación, ya que esta fruta tiende a deshidratarse rápidamente y a tomar mal olor si no es consumida minutos después haber sido abierta. Como valor agregado y para obtener más rentabilidad, se decidió comercializar la fruta en fracciones de 250 g a un costo de $500. De acuerdo a Corabastos S.A (2017), el precio de 1 kg de la fruta a nivel nacional no sobrepasa los $800, lo que significó una mejor rentabilidad. Además, se logró comercializar la fruta con un cliente encargado del restaurante escolar de la Institución Educativa Ciudad la Hormiga (I.E.C.H), el cual había manifestado su intención de compra meses atrás cuando se inició con la formulación del proyecto, debido a esto se realizó la venta de fruta fresca a un valor de $800 pesos el kg.

Es adecuado resaltar que este precio se alcanzó gracias al volumen de consumo que hay en el municipio y la escasez del producto en las fechas cosechada y las condiciones climáticas que presenta la región.
9.3 Análisis financiero y flujo de caja

Tabla 13. Seguimiento financiero de los gastos del proyecto.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Año 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos Directos</td>
<td></td>
</tr>
<tr>
<td>Mano de obra</td>
<td>$1.635.000,00</td>
</tr>
<tr>
<td>Insumos</td>
<td>$893.648,00</td>
</tr>
<tr>
<td>Materiales y Herramientas</td>
<td>$1.796.452,00</td>
</tr>
<tr>
<td>Flete y Transporte</td>
<td>$105.000,00</td>
</tr>
<tr>
<td>Total costos directos</td>
<td>$4.430.100,00</td>
</tr>
</tbody>
</table>

TIR	13%
V.A.N	$3.767.321,12
TASA DE DESCUENTO	3%

Costos Indirectos	
Arrendamiento de la tierra	$300.000,00
Administración	$180.000,00
Asistencia técnica	$180.000,00
Comunicaciones	$112.899,00
Inprevistos	$125.000,00
Total costos indirectos	$897.899,00
Total costo del proyecto	$5.327.999,00
Ingresos por ventas	$10.920.000,00
Total flujo neto	$5.592.001,00

Si realizamos una evaluación financiera del proyecto, los resultados obtenidos son: Tasa Interna de Retorno (T.I.R) del 13% y una tasa de descuento del 3%; vemos que la T.I.R es mayor que el porcentaje de descuento (13% > 3%) lo que indica que el proyecto si generó rentabilidad económica, en el caso del Valor Actual Neto (V.A.N), es mayor a cero, lo cual determina que el proyecto generó ganancias, las cuales llegan a un total de $ 5.592.001.

9.4 Identificación de nuevos proyectos de emprendimiento

Actualmente, un vecino, inició una réplica del proyecto productivo en su finca donde tiene integración de plátano (*M. paradisiaca L*), yuca (*M. esculenta C*) y coca (*E. coca J*).
Adicionalmente, implementó el cultivo de sandía (*C. lanatus* L), donde antes se había cultivado coca (*E. coca* J). Los productores empiezan a entender la importancia de la integración de los cultivos de ciclo corto y empiezan a observar las desventajas que pueden tener los cultivos ilícitos.

9.5 Identificación de aliados para nuevos emprendimientos

![Figura 14. Organizaciones y/o actores aliados.](image)

Fuente. Elaboración propia.

En el esquema anterior se presentan las principales organizaciones y actores que pueden servir de aliados para continuar con nuevos emprendimientos. Las flechas del centro significan que todos estos actores tienen alguna relación entre sí y que pueden fomentar el desarrollo de nuevos proyectos. Las entidades gubernamentales como el ICA y Corpoica pueden generar información y/o control con respecto a temas fitosanitarios, nutrición, entre otros. El Ministerio de
Agricultura y Desarrollo Rural (MADR), la Alcaldía Municipal y la Gobernación pueden dar recursos económicos canalizados a través de las juntas de acción comunal del municipio.

De antemano el sector privado ofrece las posibilidades de diferentes sectores de los que se resaltan el sector financiero y el sector comercial (casas de agro insumos) que dan apoyo a los productores del municipio. Además, entidades como Contactar, Cootep, Banco Agrario y Banco mundo mujer ofrecen apoyo financiero, y Agropecuaria la Hacienda (agro insumos) y que aparte de facilitar crédito, ofrece asistencia técnica profesional.

En toda sociedad la educación es uno de los pilares más importantes y básicos para mejorar su desarrollo, en este sentido, entidades como el Servicio Nacional de Aprendizaje (SENA), el colegio agropecuario y la Institución Educativa Ciudad la Hormiga (I.E.C.H) y la Universidad de La Salle capacitan a muchos jóvenes en el sector rural para lograr el cambio en la Colombia profunda.

Por último, los productores, quienes son la base de todo el proceso agrícola, enseñan y aprenden, interactúan todo el tiempo con los demás actores tanto profesionales como empíricos para poder facilitar todos los procesos de producción. Estos productores anteriormente mencionados poseen mucha experiencia en la producción de plátano (*M. paradisiaca* L), maíz (*Zea mays*), yuca (*M. esculenta* C), café (*Coffea A*), pimienta (*Piper nigrum*), sandía (*C. lanatus* L), cacao (*T. cacao* L) y sacha inchi (*Plukenetia volubilis*).
9.6 Evaluación de la continuidad del proyecto productivo

De acuerdo a la experiencia obtenida durante el cumplimiento del proyecto productivo y a que en la región existen fuentes que financian el campo colombiano (Contactar, Cootep, Banco Agrario), la continuidad de proyecto sería factible si se establece el cultivo en un área mucho más grande con diferentes ciclos de producción y en época de bajas precipitaciones, las cuales se encuentran desde el mes de agosto hasta enero.

10. CONCLUSIÓN

Es necesario implementar semillas de sandía (*C. lanatus* L) hibridas, ya que con esto se busca precocidad, y mayor tolerancia a enfermedades, y menor tamaño de planta, para así mejorar los niveles de producción utilizando menor cantidad de plaguicidas.

Por medio del acompañamiento a los agricultores que iniciaron las réplicas de proyecto se logró conocer las necesidades más prioritarias, como el manejo de agroquímicos, planes de fertilización y elección de material vegetal, suceso muy importante dado que a partir de estos puntos se inician trabajos con comunidades que desean cambiar su manera de realizar sus actividades agrícolas.

Debemos resaltar que los costos de producción de una hectárea de sandía (*C. lanatus* L) no son altos, por lo tanto, es de vital importancia realizar planes de manejo técnico, de esta manera
realizar todo lo conveniente para evitar que estos costos se aumenten, como es el caso de la no presencia de mosca blanca (*B. tabaci G*) lo cual fue favorable ya que evita el uso de plaguicidas.

El cultivo de sandía (*C. lanatus L*) en la región lo ven de manera favorable ya que es un producto que es comercializado desde la zona oriental del país. Haciendo que el precio de este aumente lo cual es favorable para competir y tener mejor rentabilidad, a pesar de que la sandía (*C. lanatus L*) no hace parte de los productos de primera necesidad en la canasta familiar es ampliamente consumido en la región.

El proyecto productivo es una gran estrategia para distinguir la producción y comercialización del cultivo de sandía (*C. lanatus L*) en el municipio Valle del Guamuez, además permite conocer componentes agronómicos como características del suelo, manejo de plagas, enfermedades y arvenses.

El municipio Valle del Guamuez, posee condiciones ambientales propicias para el desarrollo del cultivo de sandía (*C. lanatus L*). Además, la ubicación estratégica del municipio a los mercados de Orito, San Miguel y Puerto Asís posicionan al cultivo como una fuente potencial para la diversificación de la producción agrícola y generación de ingresos para las familias del sector rural.

Los fertilizantes son una de las más importantes herramientas para el desarrollo de la agricultura tendiente a fomentar la seguridad alimentaria y mantener la productividad del suelo. Mediante el esfuerzo, el interés y entusiasmo, podremos realizar un verdadero cambio mediante la
introducción y expansión del uso de fertilizantes. Es nuestra responsabilidad y un desafío para ayudar a mejorar las condiciones de vida en cada una de nuestras regiones, y ayudar a mantener una agricultura sostenible FAO (2002).

11. BIBLIOGRAFÍA

- Banda, S. L., Corredor. D. P., y Corredor, G. S., (2004), efectos de la asociación patilla (Citrullus lanatus L) con maíz (Zea mays) sobre la población y el daño causado por tres insectos plaga y el rendimiento de estos cultivos en la Ciénaga Grande de Lorica, Córdoba.

• Cañedo V., Alfaro A., Kroschel J., (2013). Manejo integrado de plagas de insectos en hortalizas. Principios y referencias técnicas para la Sierra Central de Perú. Centro Internacional de la Papa (CIP), Lima, Perú. 48p

• De la Cruz, L. J., (2005). Entomología morfología y fisiología de los insectos. UNIVERSIDAD NACIONAL DE COLOMBIA SEDE PALMIRA.

• Patiño, T. H., Martínez, O. J., y Alvarado, G. A., (2013). Inventory of the entomofauna associated with the culture of yellow pitahaya (Selenicereus megalanthus Haw.) in Briceño (Boyacá).

• Rueda, J., (2017). Documento CEDE, N° 44, Cambio tecnológico y mejoras en el bienestar de los caficultores en Colombia: el caso de las variedades resistentes a la roya.

12. ANEXOS

12.1 Anexo 1. Plan de fertilización.

PLAN DE FERTILIZACIÓN PARA EL CULTIVO DE SANDÍA

1. Determinación de la (CICE).

\[CICE = \sum \text{meq/100g de suelo seco de Ca+Mg+Na+K+Al} \]

\[CICE = 3,33 \text{ meq/100g de Ca} + 0,67 \text{ meq/100g de Mg} + 0,09 \text{ meq/100g de Na} + 0,12 \text{ meq/100g de K} + 0,14 \text{ meq/100g de Al} = 4,35 \text{ meq/100g de ss.} \]

2. Determinación de bases totales (SBT).

\[SBT = \frac{\sum \text{meq de suelo seco de Ca + Mg + Na + K}}{CICE} \times 100\% \]

\[SBT = \frac{3,33 \text{ meq/100g de Ca} + 0,67 \text{ meq/100g de Mg} + 0,09 \text{ meq/100g de Na} + 0,12 \text{ meq/100g de K}}{4,35 \text{ meq/100g}} \times 100\% = 96,78\% \]

3. Determinación de bases individuales
\[SBT_{Na} = \frac{\text{meq} \, \text{de Na}}{\text{CICE}} * 100\% \]

\[SBT = \frac{0.09 \, \text{meq} \, \text{de Na}}{4.35 \, \text{meq} \, \text{100g}} * 100\% = 2.07\% \]

\[SBT_{Ca} = \frac{\text{meq} \, \text{de Ca}}{\text{CICE}} * 100\% \]

\[SBT = \frac{3.33 \, \text{meq} \, \text{de Ca}}{4.35 \, \text{meq} \, \text{100g}} * 100\% = 76.55\% \]

\[SBT_{Mg} = \frac{\text{meq} \, \text{de Mg}}{\text{CICE}} * 100\% \]

\[SBT = \frac{0.67 \, \text{meq} \, \text{de Mg}}{4.35 \, \text{meq} \, \text{100g}} * 100\% = 15.40\% \]

\[SBT_{K} = \frac{\text{meq} \, \text{de K}}{\text{CICE}} * 100\% \]

\[SBT = \frac{0.12 \, \text{meq} \, \text{de K}}{4.35 \, \text{meq} \, \text{100g}} * 100\% = 2.75\% \]
- \(SBT \, Al = \frac{\text{meq de Al}}{\text{CICE}} \times 100\% \)

\[
SBT = \frac{0,14 \text{meq de Al}}{4,35 \text{meq de Al}} \times 100\% = 3,21\%
\]

4. Determinación de la relación iónica

- Relación de Ca/Mg = \(\frac{\text{meq de Ca}}{\text{meq de Mg}}\)

Relación de Ca/Mg = \(\frac{3,33 \text{meq de Ca}}{0,67 \text{meq de Mg}} = 4,97\)

- Relación de Ca/K = \(\frac{\text{meq de Ca}}{\text{meq de K}}\)

Relación de Ca/K = \(\frac{3,33 \text{meq de Ca}}{0,12 \text{meq de K}} = 27,75\)

- Relación de Mg/K = \(\frac{\text{meq de Mg}}{\text{meq de K}}\)

Relación de Mg/K = \(\frac{0,67 \text{meq de Mg}}{0,12 \text{meq de K}} = 5,58\)

- Relación de Ca + Mg/K = \(\frac{\text{meq de Ca} + \text{meq de Mg}}{\text{meq de K}}\)
Relación de Ca + Mg/K = $\frac{3,33 \text{ meq de } Ca + 0,67 \text{ meq de } Mg}{0,12 \text{ meq de } K} = 33,33$

<table>
<thead>
<tr>
<th>CANTIDAD</th>
<th>INTERPRETACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sat de Na</td>
<td>2,07% Bajo</td>
</tr>
<tr>
<td>Sat de Al</td>
<td>3,21% Bajo</td>
</tr>
<tr>
<td>Sat de Ca</td>
<td>76,55% Alto</td>
</tr>
<tr>
<td>Sat de Mg</td>
<td>15,4% Ideal</td>
</tr>
<tr>
<td>Sat de K</td>
<td>2,75% Bajo</td>
</tr>
<tr>
<td>Relación de Ca/Mg</td>
<td>4,97 Medio</td>
</tr>
<tr>
<td>Relación de Ca/K</td>
<td>27,75 Medio</td>
</tr>
<tr>
<td>Relación de Mg/K</td>
<td>5,58 Bajo</td>
</tr>
<tr>
<td>Relación de Ca + Mg/K</td>
<td>33,3 Medio</td>
</tr>
<tr>
<td>CICE</td>
<td>4,35 meq/100g de suelo Bajo</td>
</tr>
<tr>
<td>SBT</td>
<td>96,78% Alto</td>
</tr>
</tbody>
</table>

6. Determinación de volumen del suelo (VS).

- $vs = \text{ Área } m^2 \times \text{ profundidad efectiva del cultivo } m$

$vs = 10,000 m^2 \times 0,1 m = 1000 m^3$
7. Densidad aparente (da)

1,33g/cm³ Según el programa Soil Water Characteristics

da = 1,33g/cm³ * 1.000 = 1330 kg/m³

8. Determinar el peso de la capa arable

Pca= vs*da

Pca= 1000 m³ * 1.330 kg/m³ = 1.330.000 kg/ha

9. Determinación de la disponibilidad de bases en el suelo (DBS).

- **DBS. K**

 \[
 \text{DBS. K} = \left(\frac{\text{meq de K} \times \text{Pca kg/m³}}{100} \right) \times \left(\frac{\text{meq As K}}{100} \right) = 0,039098 \times \frac{\text{meq de K} \times 1.330.000 \text{ kg/ha}}{100} \times \frac{\text{meq As K}}{100} = 62,24 \text{ kg de K}
 \]

- **DBS. Mg**

 \[
 \text{DBS. Mg} = \left(\frac{\text{meq de Mg} \times \text{Pca kg/ha}}{100} \right) \times \left(\frac{\text{meq As Mg}}{100} \right) = 0,0121525 \times \frac{\text{meq de Mg} \times 1.330.000 \text{ kg/ha}}{100} \times \frac{\text{meq As Mg}}{100} = 106,9 \text{ kg de Mg}
 \]

- **DBS. Ca**

 \[
 \text{DBS. Ca} = \left(\frac{\text{meq de Ca} \times \text{Pca kg/ha}}{100} \right) \times \left(\frac{\text{meq As Ca}}{100} \right) = 0,67 \times \frac{\text{meq de Ca} \times 1.330.000 \text{ kg/ha}}{100} \times \frac{\text{meq As Ca}}{100} = 63,6 \text{ kg de Ca}
 \]
DBS. Ca = \frac{0.02004 \text{ meq de Ca}}{100 \text{ meq de Ca}} \times 3.33 \frac{\text{meq de Ca en As}}{100 \text{ meq de Ca}} = 885.78 \text{ kg de Ca}

DBS. Na = \frac{0.02 \text{ meq de Na}}{100 \text{ meq de Na}} \times \frac{1.330.000 \text{ kg/ha}}{1 \text{ meq de Na}} = 26.33 \text{ kg de Na}

10. Determinar la disponibilidad de nitrógeno en el suelo.

\[\text{NT} = \frac{\text{MO}}{20} \]
\[\text{NT} = 4.27\% / 20 = 0.2135\% \]

\[\text{NA} = \text{NT} \times 0.03 \]
\[\text{NA} = 0.2135\% \times 0.03 = 0.006405\% \text{ de NA} \]

\[\text{DNS. N} = \frac{\text{NA} \times \text{Pca kg/ha}}{100 \text{ \%}} \]
\[\text{DNS. N} = \frac{0.006405 \% \times 1.330.000 \text{ kg/ha}}{100\%} = 85.18 \text{ kg/ha de N} \]

11. Determinar la disponibilidad de nutrientes en el suelo en ppm.
- **DNS. P**: \[\frac{P_{ca \text{ kg}} \times \text{ ppm As de P}}{1'000.000 \text{ ppm}} \]

\[
\text{DNS. P} = \frac{1.330.000 \frac{\text{kg}}{\text{ha}} \times 21,9 \text{ ppm de P}}{1'000.000 \text{ ppm}} = 29,13 \text{ kg/ha de P}
\]

- **DNS. Cu**: \[\frac{P_{ca \text{ kg}} \times \text{ ppm As de Cu}}{1'000.000 \text{ ppm}} \]

\[
\text{DNS. Cu} = \frac{1.330.000 \frac{\text{kg}}{\text{ha}} \times 1,26 \text{ ppm de Cu}}{1'000.000 \text{ ppm}} = 1,67 \text{ kg/ha de Cu}
\]

- **DNS. B**: \[\frac{P_{ca \text{ kg}} \times \text{ ppm As de B}}{1'000.000 \text{ ppm}} \]

\[
\text{DNS. B} = \frac{1.330.000 \frac{\text{kg}}{\text{ha}} \times 0,09 \text{ ppm de B}}{1'000.000 \text{ ppm}} = 0,12 \text{ kg/ha de B}
\]

- **DNS. Mn**: \[\frac{P_{ca \text{ kg}} \times \text{ ppm As de Mn}}{1'000.000 \text{ ppm}} \]

\[
\text{DNS. Mn} = \frac{1.330.000 \frac{\text{kg}}{\text{ha}} \times 8,35 \text{ ppm de Mn}}{1'000.000 \text{ ppm}} = 11,1 \text{ kg/ha de Mn}
\]

- **DNS. Fe**: \[\frac{P_{ca \text{ kg}} \times \text{ ppm As de Fe}}{1'000.000 \text{ ppm}} \]
DNS. Fe = \(\frac{1.330.000 \text{ kg ha} \times 60.38 \text{ ppm de Mn}}{1'000.000 \text{ ppm}} \) = 80,3 kg/ha de Mn

- DNS. Zn = \(\frac{\text{Pca} \text{ kg ha} \times \text{ppm As de Zn}}{1'000.000 \text{ ppm}} \)

DNS. Zn = \(\frac{1.330.000 \text{ kg ha} \times 1.2 \text{ ppm de Zn}}{1'000.000 \text{ ppm}} \) = 1,59 kg/ha de Zn

- DNS. S = \(\frac{\text{Pca} \text{ kg ha} \times \text{ppm As de S}}{1'000.000 \text{ ppm}} \)

DNS. S = \(\frac{1.330.000 \text{ kg ha} \times 4.47 \text{ ppm de S}}{1'000.000 \text{ ppm}} \) = 5,94 kg de S

12. Calcular los requerimientos nutricionales de la especie.

<table>
<thead>
<tr>
<th>Requerimientos nutricionales de la sandía (RNE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos</td>
</tr>
<tr>
<td>Nitrógeno (N)</td>
</tr>
<tr>
<td>Fosforo (P)</td>
</tr>
<tr>
<td>Potasio (K)</td>
</tr>
<tr>
<td>Magnesio (Mg)</td>
</tr>
<tr>
<td>Calcio (Ca)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clima</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>Resto de elementos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frío</td>
<td>70%</td>
<td>50%</td>
<td>80%</td>
<td>90%</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>Calido</td>
<td>50%</td>
<td>30%</td>
<td>60%</td>
<td>80%</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

- \[\text{NF} = \frac{\text{RNE} - \text{DNS}}{\text{EF}} \times 100 \]

NF. N = \(\frac{150 \text{ kg/ha} - 85.12 \text{ kg/ha}}{60\%} \times 100 = 108,13 \text{ kg/ha de N} \)

NF. P = \(\frac{96 \text{ kg/ha} - 29.13 \text{ kg/ha}}{50\%} \times 100 = 121,74 \text{ kg/ha de P} \)

NF. K = \(\frac{145 \text{ kg/ha} - 62.24 \text{ kg/ha}}{70\%} \times 100 = 118,23 \text{ kg/ha de K} \)

NF. Mg = \(\frac{30 \text{ kg/ha} - 106.9 \text{ kg/ha}}{70\%} \times 100 = -96,13 \text{ kg/ha de Mg} \)

NF. Ca = \(\frac{108 \text{ kg/ha} - 885.78 \text{ kg/ha}}{80\%} \times 100 = -972,2 \text{ kg/ha de S} \)
15. Cantidad de fertilización (CF).

Teniendo en cuenta que, según la necesidad de fertilización del Mg, dio negativos, no se efectuarán los cálculos para determinar la cantidad de fertilizante a aplicar de este elemento.

- \[CF = \frac{NF \text{ Kg/ha}}{CFC} \times 100 \]

\[CF. P \text{ (DAP: 18-46-0)} = \frac{121,74 \text{ Kg de } P}{46} \times 100 = 264,65 \text{ kg/ha de DAP} \]

Si 44,96 kg de DAP es igual al 100% entonces el 18% de N que se incorpora con el (DAP)= 8,09 kg/ha de N

\[CF. N \text{ (UREA: 46-0-0)} = \frac{108,13 \text{ Kg de } N}{46} \times 100 = 235 \text{ kg/ha de UREA} \]

Menos 46,63 kg/ha de N aportado por el DAP = 187,43 kg/ha de UREA

\[CF. K \text{ (KCL: 0-0-60)} = \frac{118,25 \text{ Kg de } K}{60} \times 100 = 197 \text{ Kg/ha de K de KCL} \]

- \[\text{CB} = \frac{\text{CF}}{50 \text{ kg bulto}} \]

\[\text{CB. P} = \frac{264.65 \text{ kg/ha de DAP}}{50 \text{ kg bulto}} = 5.29 \text{ bulto de DAP} \]

\[\text{CB. N} = \frac{187.43 \text{ kg/ha de UREA}}{50 \text{ kg bulto}} = 3.74 \text{ bultos de UREA} \]

\[\text{CB. K} = \frac{197 \text{ kg/ha de KCL}}{50 \text{ kg bulto}} = 3.94 \text{ bultos de KCL} \]

17. Gramos por planta.

\[g/\text{planta} = \frac{\text{CF}}{\text{NP}} \times 1000 \]

\[g/\text{planta} = \frac{649.08 \text{ kg ha}^{-1}}{2886 \text{ plantas}} \times 1000 = 224.9 \text{ g/planta} \]

18. Fraccionamiento de la fertilización.

De acuerdo al plan de manejo técnico del cultivo se realizarán 5 fertilizaciones edáficas durante todo su ciclo.
Fraccionamiento = \frac{\frac{g}{planta} \times \text{Nº de fraccionamientos}}{100\%}

Fraccionamiento N°1 = \frac{224.9 \times \frac{g}{planta} \times 5\%}{100\%} = 11.24g/planta

Fraccionamiento N°2 = \frac{224.9 \times \frac{g}{planta} \times 15\%}{100\%} = 33.74g/planta

Fraccionamiento N°3 = \frac{224.9 \times \frac{g}{planta} \times 30\%}{100\%} = 67.47g/planta

Fraccionamiento N°4 = \frac{224.9 \times \frac{g}{planta} \times 40\%}{100\%} = 89.96g/planta

Fraccionamiento N°5 = \frac{224.9 \times \frac{g}{planta} \times 10\%}{100\%} = 22.49g/planta

12.2 Anexo 2. Análisis de suelo
RESULTADO DE ANALISIS DE SUELLO
No. de Laboratorio 11355
Fecha de Recepción 2015 9 16
Fecha de Resultado 2015 9 30

<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>RANGO ADECUADO</th>
<th>INTERPRETACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.40</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MATERIA ORGA.</td>
<td>4.27</td>
<td>%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NITROGENO (N)</td>
<td>0.21</td>
<td>%</td>
<td>0.09 0.17</td>
<td>ALTO</td>
</tr>
<tr>
<td>FOSFORO(P)</td>
<td>21.90</td>
<td>ppm</td>
<td>15.00 25.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>POTASIO (K)</td>
<td>0.12</td>
<td>meq/100g</td>
<td>0.20 0.30</td>
<td>BAJO</td>
</tr>
<tr>
<td>MAGNESIO (Mg)</td>
<td>0.67</td>
<td>meq/100g</td>
<td>4.00 6.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>CALCIO (Ca)</td>
<td>3.33</td>
<td>meq/100g</td>
<td>5.00 10.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>ALUMINIO (Al)</td>
<td>0.14</td>
<td>meq/100g</td>
<td>0.00 1.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>SODIO (Na)</td>
<td>0.09</td>
<td>meq/100g</td>
<td>0.00 1.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>AZUFRE (S)</td>
<td>4.47</td>
<td>ppm</td>
<td>5.00 10.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>HIERRO (Fe)</td>
<td>60.38</td>
<td>ppm</td>
<td>20.00 50.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>BORO (B)</td>
<td>0.90</td>
<td>ppm</td>
<td>0.60 1.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>Cobre (Cu)</td>
<td>1.26</td>
<td>ppm</td>
<td>1.50 3.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>MANGANESO (Mn)</td>
<td>8.35</td>
<td>ppm</td>
<td>15.00 20.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>ZINC (Zn)</td>
<td>1.20</td>
<td>ppm</td>
<td>1.50 3.50</td>
<td>BAJO</td>
</tr>
</tbody>
</table>

RELACIONES CATIONICAS

<table>
<thead>
<tr>
<th>Parametro</th>
<th>VALOR</th>
<th>UNIDAD</th>
<th>RANGO ADECUADO</th>
<th>INTERPRETACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca/Mg</td>
<td>4.94</td>
<td>3.00</td>
<td>6.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>Ca/K</td>
<td>28.22</td>
<td>15.00</td>
<td>30.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>Mg/K</td>
<td>5.71</td>
<td>10.00</td>
<td>15.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>(Ca+Mg)/K</td>
<td>33.93</td>
<td>20.00</td>
<td>40.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>% Sat. De Na</td>
<td>2.02</td>
<td>5.00</td>
<td>15.00</td>
<td>BAJO</td>
</tr>
<tr>
<td>% Sat. De K</td>
<td>2.71</td>
<td>2.00</td>
<td>3.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>% Sat. De Ca</td>
<td>76.47</td>
<td>50.00</td>
<td>70.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>% Sat. De Mg</td>
<td>15.48</td>
<td>10.00</td>
<td>20.00</td>
<td>MEDIO</td>
</tr>
<tr>
<td>% Sat. De Bases</td>
<td>96.68</td>
<td>35.00</td>
<td>50.00</td>
<td>ALTO</td>
</tr>
<tr>
<td>% Sat. De Aluminio</td>
<td>3.32</td>
<td>10.00</td>
<td>50.00</td>
<td>BAJO</td>
</tr>
</tbody>
</table>

MÉTODOS ANALÍTICOS