Intervención social y tecnológica a través de un sistema productivo de yuca (Manihot esculenta) en el municipio de Cartagena del Chairá Caquetá

José Franklin Borrero Tique

Universidad de La Salle, Yopal Casanare.

Follow this and additional works at: https://ciencia.lasalle.edu.co/ingenieria_agronomica

Part of the Bioresource and Agricultural Engineering Commons

Citación recomendada

This Trabajo de grado - Pregrado is brought to you for free and open access by the Facultad de Ciencias Agropecuarias at Ciencia Unisalle. It has been accepted for inclusion in Ingeniería Agronómica by an authorized administrator of Ciencia Unisalle. For more information, please contact ciencia@lasalle.edu.co.
INTERVENCIÓN SOCIAL Y TECNOLÓGICA A TRAVÉS DE UN SISTEMA PRODUCTIVO DE YUCA (*Manihot esculenta*) EN EL MUNICIPIO DE CARTAGENA DEL CHAIRÁ CAQUETÁ

INFORME FINAL

SANTIAGO MANUEL SAENZ TORRES
DIRECTOR TRABAJO DE GRADO

JOSE FRANKIN BORRERO TIQUE

UNIVERSIDAD DE LA SALLE
FACULTAD DE CIENCIAS AGROPECUARIAS
PROGRAMA INGENIERÍA AGRONÓMICA
Yopal – Casanare, septiembre 2019
TABLA DE CONTENIDO

RESUMEN .. 6
1. INTRODUCCIÓN ... 7
2. Componente Ingeniería Agronómica ... 8
 2.1. Localización ... 8
 2.2. Material vegetal ... 8
 2.2.1. Taxonomía .. 8
 2.2.2. Morfología ... 9
 2.3. Requerimientos edafoclimáticos zona y especie. ... 12
 2.5. Preparación del terreno y siembra ... 13
 2.6. Fertilización ... 14
 2.7. Manejo de recurso hídrico .. 15
 2.8. Manejo Integrado de Plagas, Enfermedades y Arvenses. 16
 2.8.1. Manejo de plagas .. 16
 2.8.2. Manejo de enfermedades .. 17
 2.8.3. Manejo de arvenses ... 18
 2.9. Cosecha y poscosecha ... 18
3. Componente de Investigación ... 19
4. Componente Social ... 21
 4.1. Nombre de la actividad desarrollada en zona de origen .. 21
 4.2. Descripción de la actividad ... 21
 4.3. Contextualización de la comunidad ... 21
5. Componente de Empresarización del campo ... 22
6. RESULTADOS Y DISCUSIÓN .. 25
 6.1. Componente Ingeniería Agronómica .. 25
 6.2. Componente de investigación .. 26
 6.2.1. Variables morfológicas ... 26
 6.2.2. Variables de producción ... 29
 6.3. Componente Social .. 32
6.4. Componente de empresarización del campo ... 34
 6.4.1. Análisis financiero del proyecto ... 34
 6.4.2. Comportamiento de los precios en la zona ... 35
 6.4.3. Oportunidades de emprendimiento en la zona ... 35
6.4.4. Principales problemáticas para la empresarización en Cartagena del Chairá

7. CONCLUSIONES... 36
8. BIBLIOGRAFÍA... 38
9. ANEXOS.. 42
 9.1. Componente ingeniería agronómica.. 42
 9.2. Componente investigativo.. 45
 9.3. Componente social... 50
LISTA DE TABLAS

Tabla 1. Localización del proyecto productivo de yuca. .. 8
Tabla 2. Clasificación taxonómica del cultivo de yuca. ... 9
Tabla 3. Requerimientos edafoclimáticos del cultivo de yuca y las condiciones que brinda la zona. .. 12
Tabla 4. Preparación del terreno y siembra del cultivo de yuca. .. 13
Tabla 5. Plan de fertilización para el cultivo de yuca (Manihot esculenta Crantz). 14
Tabla 6. Manejo de plagas en el cultivo de yuca (Manihot esculenta Crantz). 16
Tabla 7. Manejo de enfermedades en el cultivo de yuca (Manihot esculenta Crantz). 17
Tabla 8. Actividades para el control de malezas en el proyecto productivo de yuca. 18
Tabla 9. Cosecha y poscosecha de yuca (Manihot esculenta Crantz) en Cartagena del Chairá Caquetá. .. 19
Tabla 10. Especificaciones de componente investigativo del cultivo de yuca. 20
Tabla 11. Evaluación económica (financiera) del proyecto productivo de yuca. 22
Tabla 12. Resumen financiero del proyecto... 24
Tabla 13. Ejecución de componente social en zona de origen.. 32
Tabla 14. Registro fotográfico de las prácticas realizadas en el cultivo de yuca. 43
Tabla 15. Registro fotográfico de toma de datos. .. 45
Tabla 16. Registro de toma de datos morfológicos de la investigación... 46
Tabla 17. Registro de toma de datos de rendimiento de la investigación....................................... 47
Tabla 18. Análisis estadístico de los datos de producción de la investigación.............................. 48
Tabla 19. Registro fotográfico de las actividades sociales realizadas en zona de origen.......... 50
LISTA DE FIGURAS

Figura 1. Precipitaciones y temperatura máxima y mínima durante el ciclo del cultivo de yuca. .. 16

Figura 2. Canal de comercialización utilizado para el cultivo de yuca. ... 22

Figura 3. Flujo de caja del cultivo de yuca (Manihot esculenta Crantz), representando los ingresos y egresos. .. 23

Figura 4. Costos directos e indirectos del proyecto de yuca .. 24

Figura 5. Datos de altura de la planta de yuca. ... 27

Figura 6. Datos de cantidad de hojas por tratamiento de yuca. ... 28

Figura 7. Datos de diámetro del tallo de los tratamientos en yuca. ... 28

Figura 8. Datos de número de hojas de la investigación. .. 30

Figura 9. Datos de peso individual de raíces de la investigación. ... 31

Figura 10. Datos de peso total de raíces en la investigación. ... 31

Figura 11. Comportamiento de los precios de la yuca para consumo en fresco. 35

Figura 13. Monitoreo de plagas y su respectivo control. ... 42

Figura 14. Monitoreo de mosca blanca y su respectivo control. ... 42
RESUMEN

Se estableció un sistema productivo de yuca (Manihot esculenta Crantz) en Cartagena del Chairá – Caquetá donde se realizaron diferentes prácticas agrícolas necesarias para que esta especie exprese su potencial genético. Dichas actividades constaban de MIPEA, nutrición y un buen manejo en cosecha y poscosecha. Igualmente se abordaron unos componentes que se enfocan en lo social (transmitir el conocimiento a las personas de la región) donde se tuvo una participación de agricultores, asociaciones, estudiantes, entre otros, este intercambio de conocimientos fue relativamente interesantes porque se nota el interés de las personas. Por otra parte se implementó una investigación (realizar un análisis que aporte al conocimiento científico y sustente alternativas de producción) para conocer el efecto de la aplicación de un biofermento (Caldo Súper 4: macro y micronutrientes) en condiciones Cartagena del Chairá y si desde el punto de vista económico y estadístico había una diferencia significativa de la producción convencional. Por último, se realizó el proceso de comercialización que se enfocaban en una buena práctica de cosecha y venta en los mercados y conocer la problemática de tener una un sistema agrícola en la región.

ABSTRACT

A productive system of cassava (Manihot esculenta Crantz) was established in Cartagena del Chairá - Caquetá where different agricultural practices were necessary for this species to express its genetic potential. These activities consisted of MIPEA, nutrition and good harvest and post-harvest management. Likewise, some components that focus on the social aspect (transmitting knowledge to the people of the region) where there was a participation of farmers, associations, students, among others, were discussed, this knowledge exchange was relatively interesting because the interest of people. On the other hand, an investigation was carried out (to carry out an analysis that contributes to scientific knowledge and sustains production alternatives) to know the effect of the application of bioferments in Cartagena del Chairá conditions and if there was a significant difference from the economic and statistical point of view of conventional production. Finally, the conversion process was carried out that focused on good harvesting and selling practices in the markets and knowing the problem of having an agricultural system in the region.
1. INTRODUCCIÓN

La yuca (*Manihot esculenta* Crantz) es una especie que brinda un alto contenido de calorías para más de 600 millones de personas. Es una planta que se desarrolla en los trópicos, tiene la facultad de poder cultivarse en suelos ácidos, compactados y con largos periodos de sequía (FAO, 2006).

La yuca hace parte de los productos indispensables para el mercado actual y su demanda aumenta debido a su uso en la industria para obtener alimentos procesados, alimentación animal, bioetanol, almidón y sus derivados (Tofino et al., 2008).

En Colombia, para el año 2014 los departamentos con más participación en producción nacional fueron Bolívar, Córdoba, Sucre, Magdalena, Norte de Santander, Santander y Arauca, (Salazar, 2017). De acuerdo con datos brindados por la Secretaría de Agricultura del Caquetá (2017), en el departamento del Caquetá el municipio de Cartagena del Chairá es el primer productor de yuca para el año 2016 con una participación de 28.900 toneladas. En las zonas rurales de Colombia este cultivo es manejado por agricultores en pequeñas áreas de explotación, sembrando variedades aclimatadas a la zona y de manera convencional, debido a que desconocen la diversidad genética y el potencial productivo de otras variedades que pueden brindar un mayor beneficio económico(Alzate et al, 2010).

El cultivo de yuca tiene la característica particular de desarrollarse en suelos ácidos y poco fértiles, pero para garantizar altos rendimientos se requiere cantidades considerables de fertilizantes y otras fuentes de nutrientes que estimulan su producción (Howeler, 2014). Pero debido a la capacidad financiera de los agricultores y productores de yuca se está fertilizando no más del 20% de la superficie cultivada, generando bajos rendimientos y la disminución paulatina de la fertilidad de los suelos y la necesidad de una nueva idea o método de fertilización no costosa y eficiente para mejorar las características productivas (Joao et al., 2017).

Por otra parte, enfocando la agricultura moderna, ganan mayor auge y relevancia el uso de sustancias o productos bioestimulantes compuestos de aminoácidos libres y fácilmente translocables y algunos con fitohormonas como Giberelinas, Citoquininas, Ácido Jasmónico, Ácido Absídico, Auxinas (Días y Rodríguez, 2016), así como del Caldo Súper 4, que ofrecen
ventajas significativas para aspectos particulares como el desarrollo vegetativo y productivo, resistencia a factores adversos, así como mejora de la calidad de los productos cosechados (Altieri y Nicholls, 2000).

En el presente trabajo se hace una exposición del desarrollo de un proyecto productivo de yuca en Cartagena del Chairá, con la intención de aportar al desarrollo de las comunidades rurales de este territorio. A través de prácticas agronómicas sustentables implementadas se pudo demostrar la viabilidad productiva y económica que permite ofrecer una alternativa innovadora de bajo costo para los productores rurales.

2. Componente Ingeniería Agronómica

2.1. Localización

A continuación se realiza una contextualización acerca de la ubicación espacial del proyecto productivo de yuca (*Manihot esculenta* Crantz) ver tabla 1.

<table>
<thead>
<tr>
<th>LOCALIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departamento</td>
</tr>
<tr>
<td>Municipio</td>
</tr>
<tr>
<td>Corregimiento/Vereda</td>
</tr>
<tr>
<td>Coordenadas</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

2.2. Material vegetal.

2.2.1. Taxonomía
La yuca, constituida por aproximadamente 7.200 especies, y se caracterizan principalmente por tener células secretoras llamadas galactocitos que producen una sustancia lechosa que identifica generalmente a las plantas de esta familia (Ceballos et al., 2002). En la tabla 2 se aprecia la clasificación taxonómica de esta especie cultivada.

Tabla 2. Clasificación taxonómica del cultivo de yuca.

Fuente: Valdez y Hernández (2014).

<table>
<thead>
<tr>
<th>TAXONOMÍA CULTIVO DE YUCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reino</td>
</tr>
<tr>
<td>Clase</td>
</tr>
<tr>
<td>Orden</td>
</tr>
<tr>
<td>Familia</td>
</tr>
<tr>
<td>Genero</td>
</tr>
<tr>
<td>Especie</td>
</tr>
</tbody>
</table>

2.2.2. Morfología

La planta de yuca se divide en dos partes importantes que son: la parte aérea (tallo, hojas, flores y semillas) y las raíces, que es el beneficio de interés para el productor de esta especie (Fretes, 2010).

Tallo

Según Fretes (2010), el tallo de la yuca está constituido por nudos y entrenudos alternados. Se puede observar en las partes más viejas unas protuberancias que indican en los nudos la posición que ocuparon inicialmente las hojas. La distancia que hay en los entrenudos está influenciada particularmente por las condiciones edafoclimáticas donde se desarrolla la especie.
El grosor del tallo es un parámetro fundamental para tener en cuenta; hay reportes de literatura que lo relacionan directamente con el rendimiento. El tallo a los 6 u 8 meses presenta coloraciones rojo claro, rojo oscuro, marrón, verde oscuro, verde claro o amarillo. Las estacas (cangres) sembradas en algún sustrato dan origen a una planta con uno o varios tallos, que pueden ramificarse, es relevante mencionar que la posición de los tallos puede ser erecta, decumbente o acostada (Suarez y Mederos, 2011).

Hojas

La yuca tiene hojas simples, la lámina foliar es palmeada y profundamente lobulada. En una hoja, la cantidad de lóbulos es variable, generalmente son impares y oscilan entre tres y nueve, pueden medir entre 4 y 20 cm de longitud y de 1 a 6 cm de ancho; los centrales son de mayor tamaño con respecto a los laterales (Fretes, 2010). Las hojas maduras son siempre glabras; las hojas jóvenes pueden o no ser pubescentes. Esta característica es importante, pues la pubescencia está estrechamente relacionada con la resistencia a trips (Torrez, 2010).

Inflorescencia

La yuca es una planta monoica (Segreda et al., 2016), en la base de la inflorescencia se sitúan las flores femeninas, las cuales son escasas; las masculinas se hallan en la parte superior de la inflorescencia y son abundantes.

Las flores son sencillas, carecen de cálice y corola, presentan cinco tépalos (fusión de los sépalos y pétalos en las flores completas) y pueden ser rojizos o morados, amarillos, y en las flores femeninas están separados el uno del otro hasta su base (Gutiérrez et al., 2017).

La flor masculina es esférica, tiene un diámetro de aproximadamente 0,5 cm, presenta un pedicelo recto y corto y en la flor femenina es grueso y largo. La flor femenina es ligeramente más grande que la masculina, sobre todo en el eje longitudinal, también posee en su interior un
Sobre el ovario se halla el estilo que es bastante pequeño, este da origen al estigma compuesto de tres lóbulos ondulado y carnoso. Cuando no hay polinización las flores se desprenden cuando se inicia el proceso de maduración de frutos (Ceballos y Cruz 2002).

Fruto

El fruto de la yuca es una cápsula tricarpelar, con seis alas y en la madurez se abre por seis valvas, esto por lo general, se presenta a partir de los cinco meses de plantación (Segreda et al., 2016). Al realizar un corte transversal al fruto se puede observar un pericarpio, mesocarpio y un endocarpio. El pericarpio es leñoso y tiene tres lóbulos, cada lóbulo con una semilla; cuando el fruto está seco (maduro), se abre el pericarpio y dispersa las semillas.

Semillas

La semilla presenta forma elíptica de, 1 a 1,5 cm de longitud y 4 mm de espesor, la testa lisa, con color café y moteado gris. En la parte exterior, especialmente si es una semilla nueva, tiene la carúncula (estructura que se pierde una vez que la semilla cae al suelo). El extremo opuesto de la carúncula termina en una pequeña cavidad, tiene una testa de color gris, en ocasiones jaspeado con manchas oscuras. Reportes de literatura sugieren que la germinación de la semilla requiere bastante tiempo (Ceballos et al., 2002).

Raíces

Las raíces de la yuca tienen una característica particular y es su capacidad de almacenamiento de almidón, por lo tanto, es el órgano de la planta con mayor interés desde el punto de vista agronómico y económico (Ciro et al., 2017). Cuando la planta se origina a través de semilla sexual, se genera una raíz pivotante y otras de segundo orden. Generalmente, la raíz principal evoluciona y es la primera en convertirse en tuberosa.
Ahora, si la planta se origina de cangres, las raíces son adventicias y se forman en el extremo cicatrizado de la estaca y en las yemas. Estas raíces cuando se desarrollan forman un sistema fibroso y cierto porcentaje se convierte en raíces tuberosas. Si se realiza un corte transversal a la raíz se observan dos divisiones; la corteza externa que también se llama súber y la corteza interna que está formada por felodermis (tejido vivo en constante actividad de división) y que no posee esclerénquima como en el tallo (Fretes, 2010).

2.3. Requerimientos edafoclimáticos zona y especie.

De acuerdo con Jorge et al., (2008), para un óptimo desarrollo de la yuca se requieren unas condiciones de precipitaciones por encima de 750 mm, temperatura mayor a 18º C y altura por debajo de 1.500 – 2.000 msnm. En la tabla 3 se hace la relación de las condiciones que requiere la especie y las que brindan el medio donde fue implantado el sistema productivo.

Tabla 3. Requerimientos edafoclimáticos del cultivo de yuca y las condiciones que brinda la zona.

Fuente: Cadavid y Albán (2006); IDEAM (2005).

<table>
<thead>
<tr>
<th>CONDICIONES EDAFOCLIMÁTICAS</th>
<th>REQUERIMIENTOS DE LA ESPECIE</th>
<th>CONDICIONES DE LA ZONA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitaciones (mm/año)</td>
<td>600 – 3000 mm/año</td>
<td>2.500 – 3.500 mm/año</td>
</tr>
<tr>
<td>Temperatura (°C)</td>
<td>20 – 30°C</td>
<td>26°C</td>
</tr>
<tr>
<td>Altura (m.s.n.m)</td>
<td>300 – 700 m.s.n.m.</td>
<td>234 m.s.n.m.</td>
</tr>
<tr>
<td>Humedad (%)</td>
<td>50 – 90 %</td>
<td>90 %</td>
</tr>
<tr>
<td>pH</td>
<td>55.8 – 6.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Suelos</td>
<td>Francos</td>
<td></td>
</tr>
</tbody>
</table>
2.4. Prácticas Agronómicas

Al cultivo de yuca se le realizó actividades agronómicas que permitieron un óptimo desarrollo morfológico y de producción, importante para la comercialización del producto final; basado en la literatura y en el conocimiento técnico adquirido durante el proceso de formación universitario, se ejecutaron diversos procesos como presiembra, siembra, manejo integrado de plagas, enfermedades y arvenses (MIPEA), cosecha, poscosecha y comercialización, con el objetivo de adquirir un ingreso económico significativo (anexos - tabla 14).

2.5. Preparación del terreno y siembra

En la tabla 4 se presentan los requerimientos para la preparación del terreno y siembra del cultivo de yuca.

Tabla 4. Preparación del terreno y siembra del cultivo de yuca.

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>Componente</th>
<th>subcomponente</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presiembra</td>
<td>Preparación del terreno</td>
<td>En primera instancia se delimitó el terreno, luego se hizo control de arvenses con el uso de guadaña cortando las arvenses en trozos pequeños.</td>
</tr>
<tr>
<td>Siembra</td>
<td>Selección del material vegetal</td>
<td>De la selección del material vegetal depende el control de plagas, igualmente el crecimiento y desarrollo del cultivo (Fajardo et al., 2007). Para esta selección es necesario:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Estacas de plantas altamente productivas (> 4 kg/planta) y libres de plagas y enfermedades.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Evitar el daño mecánico al realizar el corte de los cangres.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>➢ Disminuir el almacenamiento del material vegetal, es decir, seleccionar, cortar y sembrar lo más pronto (mínimo 5 días).</td>
</tr>
</tbody>
</table>
- Cangres de 20 a 25 cm, 2 a 2,5 cm de diámetro, numero de yemas de 5 a 7, hay cangres que por su número de yemas requieren una longitud menor y viceversa.
- Las ramas por seleccionar deberán ser del tallo principal y de las plantas más vigorosas.

| Desinfección de material vegetal | Esta actividad se realizó con la preparación de una mezcla de RIDOMIL® GOLD MZ 68 WG (Mancozeb y Metalaxyl), en dosis de 5g/L y CIPEREX® (Cypermetrina), en dosis 1 ml/L en un recipiente luego se sumergieron los cangres en dicha solución durante 20 segundos y luego se dejaron acopiados en un sitio fresco y seco para proceder a la siembra. |

| Siembra | Para el proceso de siembra se usó un sistema a cuadro utilizando distancias de siembra 1.3 entre surcos y entre plantas, con una densidad de siembra de 2.958 plantas/ha (Casaca, 2005). |

2.6. Fertilización.

Este plan de fertilización se realizó de acuerdo a los requerimientos nutricionales de la especie 66,3 kg/ha de N; 10,1 kg/ha de P; 53,7 kg/ha de K; 12,3 kg/ha de magnesio Cadavid (2006), todo esto con el objeto de suplir las necesidades de nutrientes de las plantas en los momentos requeridos. Para esta actividad se usaron las fuentes comerciales que se observan en la tabla 5 y el método utilizado fue en media corona a 15 cm de la planta.

Tabla 5. Plan de fertilización para el cultivo de yuca (*Manihot esculenta* Crantz).

<table>
<thead>
<tr>
<th>Producto/elemento</th>
<th>Mes1: g/p</th>
<th>Mes2: g/p</th>
<th>Mes3: g/p</th>
<th>Total producto aplicado</th>
</tr>
</thead>
</table>
| Fuente: Elaboración propia.
Para complementar la fertilización edáfica, se realizaron aplicaciones foliares donde se brinda los elementos menores, necesarios para que la especie pueda tener un óptimo desarrollo; el producto aplicado fue Crecer 500® en dosis de 5 g/L.

2.7. Manejo de recurso hídrico.

La planta de yuca tiene una amplia capacidad de desarrollarse en diferentes condiciones agroecológicas y cuenta con alta tolerancia a la sequía (Giraldo, 2006). Por lo tanto, es de resaltar que desde el punto de vista económico la yuca no tiene una buena producción en condiciones de deficiencia de humedad, aunque en estas condiciones las plantas crecen y pueden producir. Este cultivo requiere de humedad para tener un buen porcentaje de brotación. El momento de mayor demanda hídrica se da entre los meses 4 y 5, aunque se debe resaltar que el exceso de humedad puede generar un crecimiento excesivo de la parte aérea y reducción del área radical (Pastrana et al., 2014).

Hubo precipitaciones durante casi todo el ciclo del cultivo (Climate-Data, 2018), con una precipitación promedio anual de 2.806 mm, por lo tanto, no hubo necesidad de realizar riego y el desarrollo del cultivo fue satisfactorio (figura 1).
Figura 1. Precipitaciones y temperatura máxima y mínima durante el ciclo del cultivo de yuca.

Fuente: Climate-Data (2018).

2.8. Manejo Integrado de Plagas, Enfermedades y Arvenses.

2.8.1. Manejo de plagas

Las plagas que se presentaron en el lote fueron particularmente gusano cornudo (*Manduca sexta*), grillos (orden Orthóptera), mosca blanca, debido a los monitoreos y controles oportunos, no generaron ningún daño que haya implicado limitación del desarrollo del cultivo (tabla 6); en anexos (figura 13 y 14) se pueden apreciar los monitoreos y los respectivos controles de las plagas.

Tabla 6. Manejo de plagas en el cultivo de yuca (*Manihot esculenta* Crantz).

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Tipo de afectación</th>
<th>Monitoreo / semana</th>
<th>Control</th>
<th>Producto, dosis y observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gusano cornudo</td>
<td>Manduca sexta</td>
<td>Defoliación</td>
<td>Zig – Zag</td>
<td>Manual</td>
<td>Otra manera de observar la presencia de estas plagas se dio, en el momento de aplicaciones foliares. En ese</td>
</tr>
</tbody>
</table>
Grillos (Orthóptera)

<table>
<thead>
<tr>
<th>Defoliación</th>
<th>Descripción</th>
<th>Metodología</th>
<th>Tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se observan cortes en las hojas y en otros casos totalmente defoliadas la planta.</td>
<td>Zig – Zag</td>
<td>Usando 100 plantas al azar/muestreo</td>
<td>Químico</td>
</tr>
</tbody>
</table>

Se aplicaba cypermetrina en dosis de 1 ml/L, para control de mosca blanca y también disminuía la afectación por grillos en el lote.

Mosca blanca

<table>
<thead>
<tr>
<th>Suctionador</th>
<th>Descripción</th>
<th>Metodología</th>
<th>Tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se observa el envés de la hoja, con moscas de color blanco.</td>
<td>Zig – Zag</td>
<td>Usando 100 plantas al azar/muestreo</td>
<td>Químico</td>
</tr>
</tbody>
</table>

Cypermetrina (1 ml/L); Regen® (Fipronil) en dosis 1 ml/L. La presencia de esta plaga no fue significativa, sin embargo, se hacían aplicaciones para que la plaga no aumentara esporádicamente.

2.8.2. Manejo de enfermedades

Tabla 7. Manejo de enfermedades en el cultivo de yuca (*Manihot esculenta* Crantz).

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>MANEJO INTEGRADO DE ENFERMEDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
</tr>
<tr>
<td>Desinfección del material vegetal</td>
</tr>
</tbody>
</table>
Estando el cultivo implementado y acuerdo con los muestreos sistemáticos realizados no se observaron síntomas relacionados con enfermedad alguna. Sin embargo se hicieron aplicaciones preventivas con los fungicidas Ridomil Gold ® (i.a. Mancozeb y Metalaxyl) en dosis 5 ml/L y Zimcarben ® (i.a. Carbendazim) dosis 5 g/L, con el objeto de prevenir posibles patógenos.

En el sistema productivo era imperativo realizar un pediluvio en la entrada principal del lote con el objeto de evitar la entrada o salida de agentes patógenos que afecten el cultivo de yuca o algún cultivo adyacente. Cabe resaltar que la solución usada fue yodo agrícola a 5%.

2.8.3. Manejo de arvenses

Tabla 8. Actividades para el control de malezas en el proyecto productivo de yuca.

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>MANEJO DE ARVENSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Control mecánico</td>
</tr>
</tbody>
</table>

2.9. Cosecha y poscosecha.

Para la cosecha se tenía estipulado un manejo general que se indica en la tabla 9, pero debido a que el cultivo se vendió directamente a un intermediario, no se realizó dicha actividad.

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Cosecha</th>
<th>Destoconado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El destoconado consta de cortar el tallo de las plantas, dejándola sin ramas, para estimular el almacenamiento de carbohidratos directamente a las raíces tuberosas (Casaca, 2005). Esta actividad se realizará de 8 a 15 días antes de cosecharse, para permitir la translocación de azucares.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poscosecha</th>
<th>Arrancado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La extracción de las raíces tuberosas se puede realizar de forma manual, con mucho cuidado para no afectar el producto de interés.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Acopio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se realizará el acopio de las yucas en un lugar de sombra donde se seleccionarán para llevar a su comercialización.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Selección</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se seleccionarán las yucas con las mejores condiciones en relación a la NTC 1255, es decir, de acuerdo al tamaño, libre de daños por plagas, roedores, entre otras características.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Empaque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se empacarán en costales de 50 kg, para ser llevadas los consumidores o intermediarios.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Transporte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>El transporte será realizado desde el lote de producción hasta la vía principal, en este caso se usarán caballos de carga, posteriormente se llevarán en carro hasta el municipio de Cartagena del Chairá – Caquetá, donde será comercializada a consumidores e intermediarios.</td>
</tr>
</tbody>
</table>

3. **Componente de Investigación**

Se planteó la evaluación de diferentes concentraciones de Caldo Súper 4 (macro y micronutrientes) para evaluar parámetros morfológicos y de rendimiento del cultivo de yuca, para esto se planteó un sistema de bloques completamente al azar donde se proponen 3 tratamientos y un testigo, y tres repeticiones. Se pretende conocer la respuesta de las plantas
a estas aplicaciones y también conocer si desde el punto de vista nutricional es recomendable aplicar este tipo de biofertilizantes para la aplicación en los sectores rurales y mitigar problema de fertilización vegetal, debido a que ha sido una problemática en el agro colombiano.

Tabla 10. Especificaciones de componente investigativo del cultivo de yuca.

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Objetivo de investigación</th>
<th>Evaluar el efecto diferentes diluciones de Caldo Súper 4 en el rendimiento del cultivo de yuca (Manihot esculenta Crantz) en condiciones de Cartagena del Chairá-Caquetá</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>Esta investigación de plantearon 4 tratamientos con 3 repeticiones:</td>
</tr>
<tr>
<td></td>
<td>T0: Aplicación de agua</td>
</tr>
<tr>
<td></td>
<td>T1: Caldo Súper 4 a 5%</td>
</tr>
<tr>
<td></td>
<td>T2: Caldo Súper 4 a 10%</td>
</tr>
<tr>
<td></td>
<td>T3: Caldo Súper 4 a 15%</td>
</tr>
<tr>
<td>Variables respuesta</td>
<td>1). Número de raíces.</td>
</tr>
<tr>
<td></td>
<td>2). Peso individual de raíces.</td>
</tr>
<tr>
<td></td>
<td>3). Peso neto de raíces.</td>
</tr>
<tr>
<td></td>
<td>La medición de estas variables se realizó a 12 platas/tratamiento, lo que indica, luego se suman todos los resultados de las plantas y se promedia para tener un dato de cada tratamiento para luego hacer la comparación.</td>
</tr>
<tr>
<td>Diseño estadístico</td>
<td>Para esta evaluación se planteó un diseño de Bloques Completamente al Azar (BCA)</td>
</tr>
<tr>
<td>Análisis estadístico de datos (incluir)</td>
<td>Para el análisis estadístico se realizó un</td>
</tr>
</tbody>
</table>
4. Componente Social

4.1. Nombre de la actividad desarrollada en zona de origen.

Realización de prácticas de extensión rural con aporte técnico relacionado con parámetros agrícolas y pecuarias dirigidos a los productores de la vereda El Brillante del municipio Cartagena del Chairá Caquetá.

4.2. Descripción de la actividad

Se desarrollaron días de campo para brindar información técnica a los agricultores acerca del manejo integrado de plagas de importancia agronómica en praderas y sistemas silvopastoriles, utilizados para el sostenimiento y alimentación de bovinos doble propósito (carne y leche), igualmente se hicieron charlas acerca de las prácticas agronómicas más relevantes de los cultivos de yuca y plátano, entre otros cultivos de interés para los agricultores.

Esta actividad se realizó porque es importante brindar un aporte al conocimiento rural, además se fortalecen prácticas de manejo agronómico de cultivos, uso eficiente de praderas, entre otras actividades importantes para el sector agropecuario.

4.3. Contextualización de la comunidad

Esta intervención fue dirigida para las personas de Cartagena del Chairá, que han observado el manejo del cultivo de yuca y quieren obtener un conocimiento básico en manejo de cultivos para implantarlo en sus fincas o áreas de su propiedad. Particularmente se socializó
con diferentes tipos de personas, es decir, hombres, mujeres, niños, instituciones educativas, asociaciones, comités, etcétera. Lo importante es que se observó el interés y se buscaron métodos de trabajo y de apoyo por parte del ingeniero agrónomo en formación, para estar presente en algunas de las etapas de producción de sus especies de interés agropecuario.

5. Componente de Empresarización del campo

La comercialización del producto se realizó directamente a un consumidor final, como se observa en la figura 2, una sola persona realizó la compra del lote de producción siendo el responsable del proceso de cosecha y poscosecha.

![Diagrama de canal de comercialización](image)

Figura 2. Canal de comercialización utilizado para el cultivo de yuca.
Fuente: Elaboración propia.

Existen diferentes métodos que permiten evaluar desde el punto de vista financiero la viabilidad de un proyecto. En la tabla 11 se presentan los parámetros para corroborar la efectividad del proyecto.

<table>
<thead>
<tr>
<th>ÍTEM A EVALUAR</th>
<th>PARÁMETROS A CONSIDERAR</th>
</tr>
</thead>
</table>
| **TASA INTERNA DE RETORNO (TIR)** | ➢ TIR > tasa de descuento: es viable el proyecto.
➢ TIR< tasa de descuento: se rechaza el proyecto.
➢ TIR= tasa de descuento: se tiene la facultad de aceptar o rechazar el proyecto implementado o a implementar. |
| **VALOR ACTUAL NETO (VAN)** | ➢ VAN>0 es viable el proyecto (se acepta)
➢ VAN<0 se rechaza el proyecto. |
La tasa interna de retorno indica criterios para aceptar o rechazar un proyecto de inversión (Mesa, 2004). El valor presente neto (VPN) es un indicador que permite medir los movimientos de los ingresos y egresos que tendrá un proyecto (Rosillo, 2009).

En el análisis estadístico del proyecto productivo de yuca presentó una tasa interna de retorno (TIR) de 11%, con una tasa de descuento mínima planteada de 3%, y el valor actual neto (VAN) de $1.614.663, de manera que las utilidades equivalieron a $2.740.400.

El recurso económico que se disponían para la ejecución del proyecto productivo se puede evidenciar en la figura 3, en cada uno de los meses del ciclo del cultivo. La inversión necesaria para la ejecución de este cultivo no fue elevada (tabla 12 – figura 4) y en relación con la producción final se puede observar que el beneficio económico fue satisfactorio.

Figura 3. Flujo de caja del cultivo de yuca (*Manihot esculenta* Crantz), representando los ingresos y egresos.

Fuente: Elaboración propia.
Tabla 12. Resumen financiero del proyecto.

Fuente: Elaboración propia.

RESUMEN FINANCIERO

<table>
<thead>
<tr>
<th>Costos directos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mano de obra</td>
<td>$ 810.000,00</td>
</tr>
<tr>
<td>Insumos</td>
<td>$ 529.600,00</td>
</tr>
<tr>
<td>Materiales y Herramientas</td>
<td>$ 100.000,00</td>
</tr>
<tr>
<td>Transporte</td>
<td>$ 200.000,00</td>
</tr>
<tr>
<td>Total costos directos</td>
<td>$ 1.639.600,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costos indirectos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Administración</td>
<td>$ 55.000,00</td>
</tr>
<tr>
<td>Asistencia Técnica</td>
<td>$ 10.000,00</td>
</tr>
<tr>
<td>Comunicaciones</td>
<td>$ 55.000,00</td>
</tr>
<tr>
<td>Total costos indirectos</td>
<td>$ 120.000,00</td>
</tr>
</tbody>
</table>

Figura 4. Costos directos e indirectos del proyecto de yuca.

Fuente: Elaboración propia.
6. RESULTADOS Y DISCUSIÓN

6.1. Componente Ingeniería Agronómica

En el departamento del Caquetá existen muy pocos sistemas de producción de yuca particularmente porque no existe tecnología disponible para los pequeños productores, por lo tanto, los cultivos son manejados de acuerdo al conocimiento empírico lo que a su vez es la causa de que el rendimiento no sea satisfactorio.

El cultivo de yuca es una especie que requiere de diferentes manejos integrados plagas, enfermedades, arvenses y otros. Para ello, se usan métodos mecánicos, biológicos, químicos, etc., todo lo anterior es con el fin de evitar y disminuir el tipo de plaga que este causando antagonismo al óptimo desarrollo de la especie de interés agronómico. Previo a control, debe haber un respectivo monitoreo para conocer el nivel del daño y tener en cuenta desde el punto de vista económico si es necesario un control.

Al momento de realizar la siembra se debe tener en cuenta la calidad del material vegetal, es decir, que las plantas seleccionadas para obtener los cangres estén libres de enfermedades y plagas, también que tengan una producción alta para garantizar el éxito en el lote a implementar. Igualmente, el terreno debe ser un factor importante, porque si es muy compacto va a limitar el desarrollo de las raíces y por ende afecta el rendimiento.

El manejo de plagas tiene que ser un pilar dentro del manejo de un cultivo, debido a que ahí está el éxito de la producción, para ello se deben tener en cuenta las condiciones climáticas en relación con los monitoreos, pues es un criterio técnico para realizar la actividad necesaria y oportuna para manejo de la plantación. Es necesario tener en cuenta las acciones preventivas, en el caso de las enfermedades, realizar un pediluvio y desinfectar las herramientas es necesario y eficiente. Igualmente, la desinfección del material vegetal es vital para brindar mayor inocuidad en el proceso de brotación y crecimiento, de ahí en adelante se empiezan las acciones de monitoreo y aplicaciones preventivas.
El control de arvenses es necesario tenerlo muy en cuenta, particularmente en los primeras meses del cultivo debido a la competencia que pueden ejercer las malezas en el área de producción generando factores negativos como hospederos de plagas y enfermedades, cuando las plantas están bien desarrolladas se encargan de limitar la luminosidad en el suelo y disminuye la intensidad de las arvenses de esta manera el control de malezas no será tan necesario.

Finalizando la práctica de manejo del cultivo, se tiene la cosecha y poscosecha para la respectiva comercialización. Es necesario tener en cuenta el destoconado para estimular el almacenamiento de carbohidratos, el punto de acopio para garantizar la calidad del producto y la inocuidad. También es necesario que en el transporte se tenga mucha cuidado para no afectar la calidad del producto y garantizar una efectiva comercialización.

6.2. Componente de investigación

Para evaluar el rendimiento de la especie y la respuesta a la aplicación de este biofermento (Caldo Súper 4: macro y micronutrientes) se tuvieron en cuenta variables morfológicas y de producción. Primero los tratamientos fueron T0: Agua; T1: 5% Súper 4; T2: 10% Súper 4 y T3: 15% súper 4, cada tratamiento está formado por 4 plantas distribuidas en 3 bloques (12 plantas/tratamiento), esto indica un total de área de muestra de 48 plantas.

6.2.1. Variables morfológicas

Dentro de las variables morfológicas se encuentran altura de la planta (m), diámetro del tallo (cm) y número de hojas, esto con el fin de conocer el desarrollo de los tratamientos durante el proceso de muestreos.

Barrientos, García y Castillo (2015) mencionan que la acumulación de biomasa, es un factor que puede expresar altos rendimiento en un cultivo y está relacionado particularmente con sus hojas, tallos y raíces, esto igualmente debe tener un soporte adicional de clima óptimo y nutrientes necesarios e indispensables para cumplir el ciclo de productivo de la especie.
Como se observa en la figura 5, 6 y 7, no se presenta diferencias durante el periodo de crecimiento de las plantas de yuca (*Manihot esculenta* Crantz), lo cual se podría decir que el rendimiento sería similar entre los tratamientos que se aplicaron durante la investigación. Pero Forero, Fernández y Álvarez (2010), mencionan que no necesariamente un alto desarrollo morfológico puede indicar altas producciones en relación con especies que se expresen en menor potencial de crecimiento. Complementando lo anterior, Condori et al. (2016), evalúan en papa (*Solanum spp*) la aplicación de diferentes diluciones de un biol, donde encuentran que no hay diferencias significativas en relación con variables morfológicas, pero en rendimiento si hubo diferencias estadísticamente significativas, lo anterior, puede indicar que entre los tratamientos que se están evaluando el rendimiento podría ser un factor determinante dentro de los resultados obtenidos.

Figura 5. Datos de altura de la planta de yuca.

Fuente. Elaboración propia.
Figura 6. Datos de cantidad de hojas por tratamiento de yuca.

Fuente. Elaboración propia.

Figura 7. Datos de diámetro del tallo de los tratamientos en yuca.

Fuente. Elaboración propia.

Finalmente, es de resaltar que el crecimiento y desarrollo en la investigación muestra que la plantación fue uniforme y que llegó a producción con características morfológicas similares y
que la producción fue satisfactoria para el beneficio económico de quien la cosecho y le dió su valor o uso agregado.

6.2.2. Variables de producción

Con respecto a los parámetros de producción y de acuerdo con el ANOVA que se realizó (anexos - tabla 18) se tuvieron diferencias significativas entre el tratamiento testigo (agua) y las diluciones de Caldo Súper 4 (5%, 10% y 15%), por lo tanto, se puede afirmar que este tipo de producto tiene un beneficio significativo en el rendimiento al momento de aplicarlo una plantación. Lo mencionado anteriormente se puede sustentar con lo que indica Sugino et al., (2013), donde se resalta la importancia de aplicar un tipo de biofermento debido a que aparte de altas producciones y brindar nutrientes importantes para las plantas, también estimulan la actividad y aumento de población microbiana en el suelo, esto contribuye a un control de patógenos y a solubilizar nutrientes en el medio edáfico.

Como se observa en la figura 8 se encuentran diferencias significativas entre las diferentes dosis del biofermento con respecto al testigo, particularmente se puede atribuir a que estos productos son considerados bioestimulantes por ende contienen microorganismos que brindan algún estimulo radical por ejemplo pueden penetrar a la corteza de la raíz y estimular la activación de hormonas (Vargas et al., 2007), igualmente solubilizar fosforo y también generar una cantidad mayor de raíces y por ende una mayor producción (Cepeda, 2008).

El peso individual y total de raíces como se observa en la figura 9 y 10, se tienen diferencias significativas entre las dosis de biofermento y el tratamiento testigo (agua), es de mencionar que entre el tratamiento 1, 2 y 3 no se encontraron diferencias significativas lo cual indica que la aplicación de este producto no se debe tener en cuenta las dosis, sino que haya un suministro a los cultivares. Pombosa et al., (2016), en su ensayo de la aplicación de un biol en diferentes concentraciones (2%, 4% y 6%) donde tuvo diferencias en el parámetro de rendimiento del cultivo de Lactuca sativa, igualmente mayor diámetro del tallo y hojas que en su
caso era el producto de interés. También este autor menciona que desde el punto de vista económico es rentable la aplicación de este tipo de bioestimulante y brinda características morfológicas y de rendimiento importantes para las especies que se deseen implementar.

Figura 8. Datos de número de hojas de la investigación.

** Fuente.** Elaboración propia.

Como se observó la diferencia entre el testigo T0 con las diluciones T1, T2 y T3, ahora queda mencionar que en la figura 9 y 10, no hay diferencias estadísticamente significativas entre los tratamientos del producto aplicado en diferentes diluciones, pero si se puede observar un mayor peso en T2 y T3 con respecto al T1, esto concuerda con lo que reporta Jerez et al. (2017), donde no encuentra diferencias significativas desde el punto de vista estadístico en el número de raíces de papa, pero desde un análisis a criterio se pueden observar tratamientos con mejor desarrollo que otros, por lo cual, se podría destacar como efecto positivo del producto bioestimulante aplicado.
Figura 9. Datos de peso individual de raíces de la investigación.

Fuente. Elaboración propia.

Figura 10. Datos de peso total de raíces en la investigación.

Fuente. Elaboración propia.
La diferencia que se presentó entre los tratamientos (dosis) y el testigo (agua) fue de aproximadamente 2 kg (ver figura 10), lo que desde el punto de vista económico tiene una gran significancia, debido a que al extrapolar estos datos de rendimiento a determinada unidad de área el beneficio será aún mayor. Esto podría ser una solución para el agricultor de escaso recurso que limita la nutrición vegetal debido a la impotencia de suplir los gastos de producción que demanda un cultivo.

6.3. Componente Social

Para este componente se dio a conocer el proyecto de yuca con las personas cercanas a la familia, luego ellos difundieron el mensaje a las demás personas de la vereda y los alrededores. Particularmente se hacía énfasis en un método de producción de yuca y otras especies como plátano, especies forrajeras y su manejo integrado, igualmente se ofreció asistencia totalmente gratis y posibles reuniones para hacer intercambio del conocimiento (agrónomo-agricultor).

La intención fue acatada por instituciones, asociaciones, productores agrícolas (tabla 13; anexos tabla 19) que pretendían obtener un poco de conocimiento y compartir con alguien que ha sido de la región y que tiene un poco de conocimiento técnico que se puede aprovechar.

Tabla 13. Ejecución de componente social en zona de origen.

** Fuente:** Elaboración propia.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Tema</th>
<th>Lugar y población beneficiada</th>
<th>Número de Asistentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charla de manejo de sistemas silvopastoriles</td>
<td>Manejo de parcelas y praderas y alimentación bovina.</td>
<td>Esta actividad se realizó en la vereda Camicaya Alto, con productores de especies forrajeras. Esto fue llevado a cabo en conjunto la Asociación Económica y Solidaria del medio y bajo Caguán (ASOES).</td>
<td>20</td>
</tr>
<tr>
<td>Actividad</td>
<td>Tema</td>
<td>Lugar y población beneficiada</td>
<td>Número de Asistentes</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>M.I.P. y manejo agronómico del cultivo de plátano</td>
<td>Manejo de picudo (Cosmopolites sordidus), prácticas de deshoje y descalcete.</td>
<td>La actividad se realizó con estudiantes de la vereda Camicaya medio y constaba de manejo agronómico del cultivo de plátano, piña, yuca entre otros, desde la siembra hasta la cosecha, cabe resaltar que se acompañó durante la siembra y actividades de deshoje y descalcete.</td>
<td>17</td>
</tr>
<tr>
<td>Siembra de plátano en finca del señor Ignacio</td>
<td>Siembra en campo del material vegetal y manejo agronómico</td>
<td>Esta actividad se realizó en la vereda Camicaya medio, en la finca del señor Ignacio Ríos. Las actividades fueron la siembra y el manejo del cultivo, es decir, realizar el acompañamiento durante todo el ciclo de la plantación.</td>
<td>2</td>
</tr>
<tr>
<td>Asistencia técnica en 1 huerta casera</td>
<td>Manejo de plagas y enfermedades</td>
<td>Se realizó en la vereda El Brillante, en la parcela del señor Bernardino Reina a petición del agricultor, particularmente por conocer conceptos como la rotación de modos de acción, biopreparados y entomopatógenos.</td>
<td>2</td>
</tr>
<tr>
<td>Siembra de pasto de corte y manejo de especies forrajeras</td>
<td>Siembra de pasto, manejo del salivazo (Aenolamia spp), fertilización.</td>
<td>Esta actividad se realizó en la finca del señor Ignacio Ríos en la vereda El Brillante. Se pretendía tener forrajes para un aumento en la producción de leche y tener menos limitaciones al ataque de plagas como el salivazo.</td>
<td>5</td>
</tr>
</tbody>
</table>
Tabla de actividades

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Tema</th>
<th>Lugar y población beneficiada</th>
<th>Número de Asistentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acompañamiento a estudiantes en manejo de plátano</td>
<td>Manejo de plagas Deshoje y descalcete</td>
<td>Se realizó con estudiantes de la vereda el Brillante, acompañamiento que se realizó desde que estaba implementado hasta la cosecha.</td>
<td>16</td>
</tr>
<tr>
<td>Charla a cacaoteros en manejo de plátano.</td>
<td>Prácticas agronómicas culturales</td>
<td>Se realizó esta actividad a petición del presidente de cacaoteros Paulo Flórez, donde se interactuó de muy buena manera y se complementaron diferentes ideas.</td>
<td>24</td>
</tr>
</tbody>
</table>

6.4. Componente de empresarización del campo

6.4.1. Análisis financiero del proyecto

Lo planeado para el proyecto de yuca fue un presupuesto de $1.759.600, para ello se proyectó la, siembra de 2.958 unidades productivas de yuca en un área 5.000 m². Para esto se esperaba una producción de 11.832 kilogramos, también se estimaba una pérdida de 25% por daños de plagas, pudrición, raíces malformadas, obteniendo una producción neta de $ 8.874 kg.

Se esperaba alcanzar precio de $1.000/kg directamente al consumidor final (venta puerta a puerta), con lo anterior se calculaba utilidades de $8.874.000, un valor significativo con respecto al capital semilla. Pero surgió la oportunidad de vender el lote a un intermediario en el valor de $4.500.000, oferta que no fue rechazada, debido particularmente a que se evita todo el proceso de cosecha, transporte y venta, que se estimaba realizar puerta a puerta.
El ingreso obtenido fue igualmente superior al capital semilla invertido, por ello la satisfacción de terminar antes el proceso del cultivar y obtener los ingresos necesarios para hacer devolución del dinero utilizado.

6.4.2. Comportamiento de los precios en la zona

Los precios en la zona no eran muy satisfactorios particularmente para los productores, debido a que los intermediarios manejan el mercado y son los que establecen los precios para el productor y consumidor. Como se ve en figura 11 los precios para el productor se encontraban entre $1.000 y 1.200 a diferencia que se le vendía al consumidor en $1.600 y 1.800

![Precio de yuca en el mercado de Cartagena del Chaira](image)

Figura 11. Comportamiento de los precios de la yuca para consumo en fresco.

Fuente. Elaboración propia.

6.4.3. Oportunidades de emprendimiento en la zona

El cultivo de yuca, junto con el cultivo de plátano (*Musa paradisiaca*) está empezando una aceptación considerable, a pesar de la influencia de los cultivos ilícitos, hay personas que han empezado con áreas pequeñas para el consumo propio, pero se ha observado el interés y las
ganas de seguir expandiendo el sector agrícola para tener un ingreso económico adicional. Por lo tanto, se ve el cultivo de plátano (*M. paradisiaca*), yuca (*Manihot esculenta* Crantz), cacao (*Theobroma cacao*) y maíz con potencial para fortalecer el sector económico de los agricultores de la región cartagenera.

6.4.4. **Principales problemáticas para la empresarización en Cartagena del Chairá**

La problemática principal de la región está enfocada en la vocación que existe por el cultivo de coca (*Erythroxylum coca*) que demanda abundante mano de obra y genera ingresos significativos. Por lo tanto, los jóvenes prefieren dejar los estudios y empezar a laborar en estos cultivos para tener una ayuda económica dentro de sus familias. Entonces este factor evita que haya suficientes profesionales y por ende se disminuye el potencial de emprendimiento y empresarización de la zona.

7. **CONCLUSIONES**

El componente de ingeniería agronómica se logró desarrollar de manera satisfactoria debido a que el manejo que se le dio al cultivo permitió que presentara unas características morfológicas que indicaron una buena producción. También hay que tener en cuenta que el tipo de suelo donde se implementó el cultivo no tenía presencia de agentes patógenos o amenos las condiciones ambientales no fueron las indicadas para poder generar algún impacto negativo al cultivo.

También es de mencionar que la aplicación de un biofermento (Caldo Súper 4: macro y micronutrientes) tiene un beneficio significativo al momento de realizar la cosecha y comercializar el producto. Además, desde el punto de vista económico es una alternativa de nutrición vegetal para implementar por parte de los agricultores de la región, debido a que la fertilización es una limitante al no tener el presupuesto necesario para la compra de insumos agrícolas.
Con respecto al impacto social que se generó con las actividades de acompañamiento en sistemas productivos es un dato muy relevante, debido a que se benefició con aporte técnico que ayuda a optimar las actividades empíricas. La población que se favoreció es lo importante, debido a que participaron estudiantes, asociaciones y familias, que su finalidad es superarse en conocimiento y práctica.

Importante es de hacer hincapié en la viabilidad del proyecto, para este caso se presentó una TIR de 11%, una VAN de $1.614.663, lo que indica que este proceso de zona de origen generó un valor de ingresos de $4.500.000 pesos, lo que indica utilidades de $2.740.400.

Por último, es de resaltar que la actividad de cosecha no se realizó, pero el proyecto productivo de zona de origen de una u otra manera generó impactos positivos en cada uno de los componentes que se plasmaron.
8. BIBLIOGRAFÍA

33. Sugino, Nobuntou, Srisonbut, Rujikun, Luanmanee y Punlai (2013). Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in

34. Tofino, Ceballos y Romero (2008). Posibilidades de expansión del cultivo de yuca
 (*Manihot esculenta* Crantz) en el Caribe seco colombiano a partir de investigación

35. Torrez (2010). Caracterización morfológica de 37 accesiones de yuca (*Manihot esculenta*
 Crantz) del banco de germoplasma del Centro Agronómico Tropical de Investigación y
 Enseñanza (CATIE). Centro Agronómico Tropical de Investigación y Enseñanza,
 Turrialba, Costa Rica.

9. ANEXOS

9.1. Componente ingeniería agronómica

Figura 12. Monitoreo de plagas y su respectivo control.

Fuente: Elaboración propia.

Figura 13. Monitoreo de mosca blanca y su respectivo control.

Fuente: Elaboración propia.
Tabla 14. Registro fotográfico de las prácticas realizadas en el cultivo de yuca.

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Estaquillado</th>
<th>Selección de material vegetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desinfección de material vegetal</td>
<td>Siembra</td>
</tr>
</tbody>
</table>

Estaquillado y selección de material vegetal. Desinfección y siembra de material vegetal.
<table>
<thead>
<tr>
<th>Monitoreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilización foliar</td>
</tr>
<tr>
<td>Manejo de plagas, arvenses y enfermedades (MPEA)</td>
</tr>
</tbody>
</table>
9.2. Componente investigativo

Tabla 15. Registro fotográfico de toma de datos.

Fuente: Elaboración propia.

ARCHIVO FOTOGRÁFICO
Toma de datos morfológicos

Tabla 16. Registro de toma de datos morfológicos de la investigación. **Fuente:** Elaboración propia.

<table>
<thead>
<tr>
<th>HOJAS</th>
<th>Muestreo</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAT</td>
<td>1</td>
</tr>
<tr>
<td>T0 (Agua)</td>
<td>55,00</td>
</tr>
<tr>
<td>T1 (5%)</td>
<td>56,22</td>
</tr>
<tr>
<td>T2 (10%)</td>
<td>58,00</td>
</tr>
<tr>
<td>T3 (15%)</td>
<td>54,44</td>
</tr>
</tbody>
</table>

Toma de datos de producción

Tabla 17. Registro de toma de datos de rendimiento de la investigación.

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>TRAT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (Agua)</td>
<td>1,17</td>
<td>1,50</td>
<td>1,77</td>
<td>1,88</td>
</tr>
<tr>
<td>T1 (5%)</td>
<td>1,22</td>
<td>1,61</td>
<td>1,84</td>
<td>1,96</td>
</tr>
<tr>
<td>T2 (10%)</td>
<td>1,21</td>
<td>1,69</td>
<td>1,90</td>
<td>2,00</td>
</tr>
<tr>
<td>T3 (15%)</td>
<td>1,20</td>
<td>1,64</td>
<td>1,92</td>
<td>2,03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (Agua)</td>
<td>2,30</td>
<td>2,82</td>
<td>3,04</td>
<td>3,58</td>
</tr>
<tr>
<td>T1 (5%)</td>
<td>2,36</td>
<td>2,90</td>
<td>3,10</td>
<td>3,77</td>
</tr>
<tr>
<td>T2 (10%)</td>
<td>2,34</td>
<td>2,87</td>
<td>3,06</td>
<td>3,71</td>
</tr>
<tr>
<td>T3 (15%)</td>
<td>2,22</td>
<td>2,81</td>
<td>3,07</td>
<td>3,75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 (Agua)</td>
<td>0,4</td>
<td>0,4</td>
<td>0,2</td>
<td>0,3</td>
</tr>
<tr>
<td>T1 (5%)</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>T2 (10%)</td>
<td>0,5</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>T3 (15%)</td>
<td>0,4</td>
<td>0,4</td>
<td>0,5</td>
<td>0,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5%</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>10%</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>15%</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>0,3</td>
<td>0,2</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>5%</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>10%</td>
<td>0,4</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>15%</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
</tr>
</tbody>
</table>
Tabla 18. Análisis estadístico de los datos de producción de la investigación.

Fuente: Elaboración propia.

ANOVA 5%

<table>
<thead>
<tr>
<th>Origen de las variaciones</th>
<th>Suma de cuadrados</th>
<th>Grados de libertad</th>
<th>Promedio de los cuadrados</th>
<th>F</th>
<th>Probabilidad</th>
<th>Valor crítico para F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>7,05</td>
<td>3</td>
<td>2,35</td>
<td>44,0625</td>
<td>0,000176</td>
<td>4,757063</td>
</tr>
<tr>
<td>Bloques</td>
<td>0,346667</td>
<td>2</td>
<td>0,173333</td>
<td>3,25</td>
<td>0,110592</td>
<td>5,143253</td>
</tr>
<tr>
<td>Error</td>
<td>0,32</td>
<td>6</td>
<td>0,053333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7,716667</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher
Alfa=0,05
DMS= 0,46139

Error: 0,0533 Gl: 6

<table>
<thead>
<tr>
<th>Medidas</th>
<th>n</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>5,47</td>
<td>3</td>
</tr>
<tr>
<td>5% Súper 4</td>
<td>7,07</td>
<td>3</td>
</tr>
<tr>
<td>10% Súper 4</td>
<td>7,27</td>
<td>3</td>
</tr>
<tr>
<td>15% Súper 4</td>
<td>7,33</td>
<td>3</td>
</tr>
<tr>
<td>Origen de las variaciones</td>
<td>Suma de cuadrados</td>
<td>Grados de libertad</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Tratamientos</td>
<td>0,013416</td>
<td>3</td>
</tr>
<tr>
<td>Bloques</td>
<td>0,000321</td>
<td>2</td>
</tr>
<tr>
<td>Error</td>
<td>0,00117</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>0,014907</td>
<td>11</td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0,05 DMS= 0,2790

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Medidas</th>
<th>n</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>0,34</td>
<td>3</td>
<td>0,1</td>
</tr>
<tr>
<td>5% Súper 4</td>
<td>0,41</td>
<td>3</td>
<td>0,1</td>
</tr>
<tr>
<td>10% Súper 4</td>
<td>0,41</td>
<td>3</td>
<td>0,1</td>
</tr>
<tr>
<td>15% Súper 4</td>
<td>0,43</td>
<td>3</td>
<td>0,1</td>
</tr>
</tbody>
</table>

PESO TOTAL DE RAICES

ANÁLISIS DE VARIANZA

<table>
<thead>
<tr>
<th>Origen de las variaciones</th>
<th>Suma de cuadrados</th>
<th>Grados de libertad</th>
<th>Promedio de los cuadrados</th>
<th>F</th>
<th>Probabilidad</th>
<th>Valor crítico para F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamientos</td>
<td>3,194606</td>
<td>3</td>
<td>1,064869</td>
<td>38,15169</td>
<td>0,000265</td>
<td>4,757063</td>
</tr>
<tr>
<td>Bloques</td>
<td>0,137289</td>
<td>2</td>
<td>0,068644</td>
<td>2,459362</td>
<td>0,165935</td>
<td>5,143253</td>
</tr>
<tr>
<td>Error</td>
<td>0,167469</td>
<td>6</td>
<td>0,027911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,499364</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0,05 DMS= 0,31451

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>Medidas</th>
<th>n</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>1,82</td>
<td>3</td>
<td>0,9</td>
</tr>
<tr>
<td>5% Súper 4</td>
<td>2,88</td>
<td>3</td>
<td>0,9</td>
</tr>
<tr>
<td>10% Súper 4</td>
<td>2,99</td>
<td>3</td>
<td>0,9</td>
</tr>
<tr>
<td>15% Súper 4</td>
<td>3,12</td>
<td>3</td>
<td>0,9</td>
</tr>
</tbody>
</table>
9.3. Componente social

Tabla 19. Registro fotográfico de las actividades sociales realizadas en zona de origen.

Fuente: Elaboración propia.

Charla de manejo de sistemas silvopastoriles

M.I.P. y manejo agronómico del cultivo de plátano
Siembra de plátano y manejo de pastos de corte en finca del señor Ignacio

Asistencia técnica en 1 huerta casera

Acompañamiento a estudiantes en manejo de plátano

Charla a cacaoteros en manejo de plátano