Tutor 1

Patiño Forero, Álvaro Antonio

Resumen

Cuando se comienza a tomar lecciones de guitarra, el primer elemento de aprendizaje son las acordes básicos (Do, Re, Mi, Fa, Sol, La, Si) o notas naturales. La tablatura es el siguiente paso donde explícitamente se indica la posición de los dedos en el diapasón, este método es sencillo pero carece de información al momento de interpretar; por ello es necesario leer la partitura musical, siendo una tarea complicada para muchas personas que hasta ahora inician con el aprendizaje retrasando así el mismo; mediante el reconocimiento de imágenes, algoritmo OCR(Optical Carácter Recognition) y RNA (Redes Neuronales Artificiales) se desarrolló una aplicación capaz de leer la partitura por medio de visión artificial y traducirla de forma gráfica con la posición de la mano en el diapasón. Se propone una aplicación basada en los sistemas OMR (Optical Music Recognition), la verificación del funcionamiento de la aplicación se llevó a cabo en 5 etapas: 1. En la primera etapa se realiza un experimento proponiendo 3 metodologías para la eliminación de las líneas del pentagrama 2. En la segunda etapa se compara el algoritmo backpropagation y el algoritmo OCR. 3. En la etapa 3 se realiza la prueba estadística t_student a 2 conjuntos de 20 muestras (figuras musicales segmentadas y símbolos aislados), esto con el fin de comprobar si hay diferencias significativas en la lectura digital de los caracteres, justificando así los desaciertos en la identificación. 4. En la etapa 4 se realizan pruebas de asignación de tono a diversas figuras musicales predispuestas en diferentes posiciones del pentagrama. 5. En la etapa 5 se realizan pruebas de reconocimiento con fragmentos de partitura manuscritas, y se compara con la lectura de partituras digitales 6. En la etapa 6 Con el propósito de validar el software se realiza una encuesta a 10 usuarios que no habían tocado la guitarra anteriormente acerca de: el funcionamiento general de la aplicación, la posible motivación que el software genera en los encuestados, el interés del estudiante por este tipo de aplicación y si estaría dispuesto a invertir en esta clase de herramienta musical.

Programa académico

Ingeniería en Automatización

Palabras clave

Guitarra, Equipo electrónico, Visión artificial, Redes neuronales, Computadores, Aplicaciones compuestas, Lectura musical, Lectura y ejecución de partituras

Tipo de documento

Trabajo de grado - Pregrado

Licencia Creative Commons

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Fecha de elaboración

2-2018

Programa académico

Ingeniería en Automatización

Facultad

Facultad de Ingeniería

Publisher

Universidad de La Salle. Facultad de Ingeniería. Ingeniería en Automatización

Compartir

COinS